[1]
Emmons, Michael Christian, Development of Fiber Bragg Grating Strain, Thermal, and Magnetic Sensors for Smart Structure Applications. University of California, Los Angeles, 2012.
Google Scholar
[2]
Kapoor, Deepak, NiTinol for medical applications: a brief introduction to the properties and processing of nickel titanium shape memory alloys and their use in stents. Johnson Matthey Technology Review, 61.1(2017): 66-76.
DOI: 10.1595/205651317x694524
Google Scholar
[3]
Morgan, Neil, The stability of NiTi shape memory alloys and actuator applications. (1999)
Google Scholar
[4]
Bengisu, Murat, Marinella Ferrara, Materials that move: smart materials, intelligent design. Springer (2018)
Google Scholar
[5]
Zhang, Zixuan, Feng Wen, et al, Artificial intelligence‐enabled sensing technologies in the 5G/internet of things era: from virtual reality/augmented reality to the digital twin. Advanced Intelligent Systems , 4.7(2022):210-228.
DOI: 10.1002/aisy.202100228
Google Scholar
[6]
Samal, Sneha, Ondřej Tyc, et al, Fabrication of thermal plasma sprayed NiTi coatings possessing functional properties, 11.5(2021):610.
DOI: 10.3390/coatings11050610
Google Scholar
[7]
Wagner, MF-X., S. R. Dey, et al, Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling. Intermetallics ,18.6(2010):1172-1179.
DOI: 10.1016/j.intermet.2010.02.048
Google Scholar
[8]
Ahmed, M.M.Z., El-Sayed Seleman, et al, A review on friction stir welding of dissimilar Al- and Mg-alloys: Scientometric analysis and strategies for achieving high-quality joints. Journal of Magnesium and Alloys. (2023).
DOI: 10.1016/j.jma.2023.09.039
Google Scholar
[9]
Khaliq, U.A., Yusof, F., Chen, Z., et al, A comprehensive review on friction stir welding of aluminum with magnesium: A new insight on joining mechanisms by interfacial enhancement. Journal of Materials Research and Technology (JMR&T), 27(2023):4595-4624.
DOI: 10.1016/j.jmrt.2023.10.158
Google Scholar
[10]
Ahmed, M.M.Z., El-Sayed Seleman et al, Friction stir welding in the aerospace industry: The current progress and state-of-the-art review. Materials. 16 (2023): 2971.
DOI: 10.3390/ma16082971
Google Scholar
[11]
Cam, G., Javaheri, V., and Heidarzadeh, A Advances in FSW and FSSW of dissimilar Al-alloy plates. Journal of Adhesion Science and Technology. 37.2(2023).:162-194.
DOI: 10.1080/01694243.2022.2028073
Google Scholar
[12]
Kucukomeroglu, T., Aktarer, S.M., Ipekoglu, G., et al (2019) Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel. IOP Conf. Series: Materials Science and Engineering. 629:012010.
DOI: 10.1088/1757-899x/629/1/012010
Google Scholar
[13]
Kashaev, N., Ventzke, V., and Cam G, Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. Journal of Manufacturing Processes, 36(2018): 571-600.
DOI: 10.1016/j.jmapro.2018.10.005
Google Scholar
[14]
Cam, G. and Ipekoglu, G, Recent developments in joining of aluminium alloys. Int. J. Adv. Manuf. Technol, 91.5-8(2017):1851-1866.
DOI: 10.1007/s00170-016-9861-0
Google Scholar
[15]
Kucukomeroglu, T., Senturk, E., Kara, L., et al, Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy. Journal of Materials Engineering and Performance, 25.1(2016):320-326.
DOI: 10.1007/s11665-015-1838-x
Google Scholar
[16]
Kucukomeroglu, T., Aktarer, S.M., Ipekoglu, G., et al, Mechanical properties of friction stir welded St 37 and St 44 steel joints. Materials Testing, 60.12(2018):1163-1170.
DOI: 10.3139/120.111266
Google Scholar
[17]
Cam, G, Friction stir welded structural materials: Beyond Al-alloys. Int. Mater. Rev. 56.1.(2011):1-48.
DOI: 10.1179/095066010X12777205875750
Google Scholar
[18]
Xu W, Liu J, Luan G, et al, Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints. Materials & Design, 30.6(2009): 1886-1893.
DOI: 10.1016/j.matdes.2008.09.021
Google Scholar
[19]
Buffa G, Fratini L, Hua J, et al, Friction stir welding of tailored blanks: investigation on process feasibility. CIRP annals, 55.1(2006) : 279-282.
DOI: 10.1016/s0007-8506(07)60416-8
Google Scholar
[20]
Winiczenko R, Goroch O, Krzyńska A, et al, Friction welding of tungsten heavy alloy with aluminium alloy. Journal of Materials Processing Technology, 246(2017): 42-55.
DOI: 10.1016/j.jmatprotec.2017.03.009
Google Scholar
[21]
Fukumoto S, Tsubakino H, Okita K, et al, Friction welding process of 5052 aluminium alloy to 304 stainless steel. Materials Science and Technology, 15.9: (1999) 1080-1086.
DOI: 10.1179/026708399101506805
Google Scholar
[22]
Li, Qiao, Yuanxiang Zhu, et al, Microstructure and mechanical properties of resistance-welded NiTi/stainless steel joints. Journal of Materials Processing Technology, 249(2017): 538-548.
DOI: 10.1016/j.jmatprotec.2017.07.001
Google Scholar
[23]
Li, H. M, Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer. Materials & Design, 39(2012): 285-293.
DOI: 10.1016/j.matdes.2012.02.031
Google Scholar
[24]
Zoeram, A. Shojaei, SAA Akbari Mousavi, Laser welding of Ti–6Al–4V to Nitinol. Materials and Design, 61(2014): 185-190.
DOI: 10.1016/j.matdes.2014.04.078
Google Scholar
[25]
Oliveira JP, Panton B, Zeng Z, et al, Laser joining of NiTi to Ti6Al4V using a Niobium interlayer. Acta Materialia, 105(2016): 9-15.
DOI: 10.1016/j.actamat.2015.12.021
Google Scholar
[26]
Zoeram, A. Shojaei, and SAA Akbari Mousavi Effect of interlayer thickness on microstructure and mechanical properties of as welded Ti6Al4V/Cu/NiTi joints. Materials Letters, 133(2014): 5-8.
DOI: 10.1016/j.matlet.2014.06.141
Google Scholar
[27]
Zeng Z, Oliveira JP, Yang M, et al, Functional fatigue behavior of NiTi-Cu dissimilar laser welds. Materials & Design, 114(2017).: 282-287.
DOI: 10.1016/j.matdes.2016.11.023
Google Scholar
[28]
Meshram, S. D., T. Mohandas, G. Madhusudhan Reddy , Friction welding of dissimilar pure metals. Journal of Materials Processing Technology,184.3(2007): 330-337.
DOI: 10.1016/j.jmatprotec.2006.11.123
Google Scholar
[29]
Bae, I., Kim, B. H., Kim, D. G., et al, Salt Heat Treatment and Passivation to Improve the Corrosion Resistance of Nitinol (Ni-Ti). Materials, 2021;14.24(2021): 7789.
DOI: 10.3390/ma14247789
Google Scholar
[30]
Dong, P., Yao, R., Yan, Z., et al, Microstructure and corrosion resistance of laser-welded crossed nitinol wires. Materials, 11.5(2018):842.
DOI: 10.3390/ma11050842
Google Scholar
[31]
Yang, C., Cao, W., Yang, Z., et al, The study on the anti-corrosion performance of NiTi alloy in human body solution with the fabricating processes of laser irradiation and PDMS modification. Journal of Bionic Engineering, 18.1(2021):77-91.
DOI: 10.1007/s42235-021-0011-5
Google Scholar
[32]
Nik Masdek, N. R., Wahab, N. A., Ahmad Nawawi, N., et al, The effect of pH on the corrosion rate of 316L Stainless Steel, Nitinol, and Titanium-6% Aluminum-4% Vanadium in Hank's Solution. Scientific Research Journal, 18.1(2021): 1-13.
DOI: 10.24191/srj.v18i1.11389
Google Scholar
[33]
Stanford, M. K ,Preliminary investigation of surface treatments to enhance the wear resistance of 60-nitinol No. E-19245 ,(2016)
Google Scholar
[34]
Weaver, J. D., Gutierrez, E. J., Nagaraja, S., et al (2017) Sodium hypochlorite treatment and Nitinol performance for medical devices. Journal of materials engineering and performance, 26.9: 4245-4254.
DOI: 10.1007/s11665-017-2880-7
Google Scholar
[35]
Pound, B. G, Pit initiation on nitinol in simulated physiological solutions. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106.4(2018): 1605-1610.
DOI: 10.1002/jbm.b.33974
Google Scholar
[36]
Yan, X. J., and Yang, D. Z., Corrosion resistance of a laser spot‐welded joint of NiTi wire in simulated human body fluids. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77.1(2006): 97-102.
DOI: 10.1002/jbm.a.30378
Google Scholar
[37]
AL-sahib, N. K. A., and Yousuf, L. S, Effect of Reinforcement Volume Fraction on Physical Properties of Glass/Polyester Composites , (2009)
Google Scholar
[38]
Naveen, V. P., Vani, A., Prakasha, V.,et al, Studies on mechanical behaviour of knitted glass-epoxy composites. Journal of reinforced plastics and composites,19.5 (2000): 396-402.
DOI: 10.1106/29b3-nkyh-284e-ewxd
Google Scholar
[39]
NAYAK, P. L, Biodegradable Polymers: Opportunities and Challenges. Journal of Macromolecular Science, Part C, 39(3) (1999): 481–505
DOI: 10.1081/MC-100101425
Google Scholar
[40]
Zhu, L., Trepanier, C., Pelton, A. R., et al , Oxidation of nitinol and its effect on corrosion resistance. In Proceedings of the ASM Materials and Processes for Medical Device Conference, (2004). 156-161.
Google Scholar
[41]
Kim, H. S., and Bush, M. B, The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostructured materials,11.3(1999):361-367.
DOI: 10.1016/s0965-9773(99)00052-5
Google Scholar
[42]
Basak, C. B., and Sengupta, A. K, Development of a FDM based code to determine the 3-D size distribution of homogeneously dispersed spherical second phase from microstructure: a case study on nodular cast iron. Scripta materialia, 513(2004):255-260.
DOI: 10.1016/s1359-6462(04)00222-2
Google Scholar
[43]
Youssef, K. M., Koch, C. C., and Fedkiw, P. S, Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corrosion Science, 46.1(2004): 51-64.
DOI: 10.1016/s0010-938x(03)00142-2
Google Scholar
[44]
Vishwanatha, H. M., Saxena, K. K., Pramanik, A., & Behera, A. (2024). Cryo treatment and corrosion studies of nickel-titanium shape-memory alloy. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238.3,(2024):1079-1087.
DOI: 10.1177/09544089231159250
Google Scholar
[45]
Lelątko, J., Goryczka, T., & Wierzchoń, T. Structure of low temperature nitrided/oxidized layer formed on NiTi shape memory alloy. Solid State Phenomena, 163(2010), 127-130.
DOI: 10.4028/www.scientific.net/ssp.163.127
Google Scholar
[46]
Firstov, G. S., Vitchev, R. G., Kumar, H., et al, Surface oxidation of NiTi shape memory alloy. Biomaterials, 23.24(2002): 4863-4871.
DOI: 10.1016/s0142-9612(02)00244-2
Google Scholar
[47]
Chu, C. L., Wu, S. K., and Yen, Y. C, Oxidation behavior of equiatomic TiNi alloy in high temperature air environment. Materials Science and Engineering: A, 216.1-2(1996): 193-200.
DOI: 10.1016/0921-5093(96)10409-3
Google Scholar
[48]
Zeng, C. L., Li, M. C., Liu, G. Q., et al, Air oxidation of Ni–Ti alloys at 650–850 C. Oxidation of Metals,58.1(2002):171-184.
DOI: 10.1023/a:1016020709500
Google Scholar
[49]
Rapisarda E, Bonaccorso A, Tripi T R, et al, The effect of surface treatments of nickel titanium files on wear and cutting efficiency. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 89(2004):363–368.
DOI: 10.1016/s1079-2104(00)70103-x
Google Scholar
[50]
Pogrebnjak AD, Bratushka SN, Beresnev VM, et al, Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses. Russ Chem Rev, 82(2013):1135
DOI: 10.1070/rc2013v082n12abeh004344
Google Scholar
[51]
Srivastava, S. K, Electrodeposition and characterization of nickel-titanium–zinc ternary alloy from a sulfate bath,11.7(2020):7073-7077.
Google Scholar
[52]
Khan, A. N., Muhyuddin, M., and Wadood, A Development and characterization of Nickel–Titanium–Zirconium shape memory alloy for engineering applications. Russian Journal of Non-Ferrous Metals, 58.5(2017):509-515.
DOI: 10.3103/s1067821217050078
Google Scholar