Analysis of Corrosion Behavior on Rotary Friction Welded NiTinol Alloy Subjected to Heat Treatment

Article Preview

Abstract:

In this research work, Ni rich superelastic Nickel-Titanium(NiTinol) alloy rods were joined using a fully automated direct-driven rotary friction welding machine at 1900 rpm. Samples were subjected to heat treatment after the removal of flash bead. Corrosion behavior of the NiTinol samples were carried out using weight loss method and Potentiodynamic Polarization (PDP) technique using 3.5% NaCl and 1N HCl solution in interval of 12h, 24h, 36h, and 48h at different temperature conditions such as 25°C, 35°C, 45°C, and 55°C respectively. Research has been carried out to find the corrosion characteristics for both annealed and cryogenically treated samples. Research findings revealed that, in weight loss method the impact of corrosion has no effect in the welded zone. In PDP method, the corrosion rate is found to be less and insignificant compared to any other alloys. Hence, the material proved as anti-corrosive in nature. This fact is due to the formation of Titanium oxides (TiO2) and Titanium nitrides passive layers which hinders the rate of corrosion. However, more corrosion resistance was seen in cryogenically treated welded samples compared to the other samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-38

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Emmons, Michael Christian, Development of Fiber Bragg Grating Strain, Thermal, and Magnetic Sensors for Smart Structure Applications. University of California, Los Angeles, 2012.

Google Scholar

[2] Kapoor, Deepak, NiTinol for medical applications: a brief introduction to the properties and processing of nickel titanium shape memory alloys and their use in stents. Johnson Matthey Technology Review, 61.1(2017): 66-76.

DOI: 10.1595/205651317x694524

Google Scholar

[3] Morgan, Neil, The stability of NiTi shape memory alloys and actuator applications. (1999)

Google Scholar

[4] Bengisu, Murat, Marinella Ferrara, Materials that move: smart materials, intelligent design. Springer (2018)

Google Scholar

[5] Zhang, Zixuan, Feng Wen, et al, Artificial intelligence‐enabled sensing technologies in the 5G/internet of things era: from virtual reality/augmented reality to the digital twin. Advanced Intelligent Systems , 4.7(2022):210-228.

DOI: 10.1002/aisy.202100228

Google Scholar

[6] Samal, Sneha, Ondřej Tyc, et al, Fabrication of thermal plasma sprayed NiTi coatings possessing functional properties, 11.5(2021):610.

DOI: 10.3390/coatings11050610

Google Scholar

[7] Wagner, MF-X., S. R. Dey, et al, Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling. Intermetallics ,18.6(2010):1172-1179.

DOI: 10.1016/j.intermet.2010.02.048

Google Scholar

[8] Ahmed, M.M.Z., El-Sayed Seleman, et al, A review on friction stir welding of dissimilar Al- and Mg-alloys: Scientometric analysis and strategies for achieving high-quality joints. Journal of Magnesium and Alloys. (2023).

DOI: 10.1016/j.jma.2023.09.039

Google Scholar

[9] Khaliq, U.A., Yusof, F., Chen, Z., et al, A comprehensive review on friction stir welding of aluminum with magnesium: A new insight on joining mechanisms by interfacial enhancement. Journal of Materials Research and Technology (JMR&T), 27(2023):4595-4624.

DOI: 10.1016/j.jmrt.2023.10.158

Google Scholar

[10] Ahmed, M.M.Z., El-Sayed Seleman et al, Friction stir welding in the aerospace industry: The current progress and state-of-the-art review. Materials. 16 (2023): 2971.

DOI: 10.3390/ma16082971

Google Scholar

[11] Cam, G., Javaheri, V., and Heidarzadeh, A Advances in FSW and FSSW of dissimilar Al-alloy plates. Journal of Adhesion Science and Technology. 37.2(2023).:162-194.

DOI: 10.1080/01694243.2022.2028073

Google Scholar

[12] Kucukomeroglu, T., Aktarer, S.M., Ipekoglu, G., et al (2019) Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel. IOP Conf. Series: Materials Science and Engineering. 629:012010.

DOI: 10.1088/1757-899x/629/1/012010

Google Scholar

[13] Kashaev, N., Ventzke, V., and Cam G, Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. Journal of Manufacturing Processes, 36(2018): 571-600.

DOI: 10.1016/j.jmapro.2018.10.005

Google Scholar

[14] Cam, G. and Ipekoglu, G, Recent developments in joining of aluminium alloys. Int. J. Adv. Manuf. Technol, 91.5-8(2017):1851-1866.

DOI: 10.1007/s00170-016-9861-0

Google Scholar

[15] Kucukomeroglu, T., Senturk, E., Kara, L., et al, Microstructural and mechanical properties of friction stir welded nickel-aluminum bronze (NAB) alloy. Journal of Materials Engineering and Performance, 25.1(2016):320-326.

DOI: 10.1007/s11665-015-1838-x

Google Scholar

[16] Kucukomeroglu, T., Aktarer, S.M., Ipekoglu, G., et al, Mechanical properties of friction stir welded St 37 and St 44 steel joints. Materials Testing, 60.12(2018):1163-1170.

DOI: 10.3139/120.111266

Google Scholar

[17] Cam, G, Friction stir welded structural materials: Beyond Al-alloys. Int. Mater. Rev. 56.1.(2011):1-48.

DOI: 10.1179/095066010X12777205875750

Google Scholar

[18] Xu W, Liu J, Luan G, et al, Temperature evolution, microstructure and mechanical properties of friction stir welded thick 2219-O aluminum alloy joints. Materials & Design, 30.6(2009): 1886-1893.

DOI: 10.1016/j.matdes.2008.09.021

Google Scholar

[19] Buffa G, Fratini L, Hua J, et al, Friction stir welding of tailored blanks: investigation on process feasibility. CIRP annals, 55.1(2006) : 279-282.

DOI: 10.1016/s0007-8506(07)60416-8

Google Scholar

[20] Winiczenko R, Goroch O, Krzyńska A, et al, Friction welding of tungsten heavy alloy with aluminium alloy. Journal of Materials Processing Technology, 246(2017): 42-55.

DOI: 10.1016/j.jmatprotec.2017.03.009

Google Scholar

[21] Fukumoto S, Tsubakino H, Okita K, et al, Friction welding process of 5052 aluminium alloy to 304 stainless steel. Materials Science and Technology, 15.9: (1999) 1080-1086.

DOI: 10.1179/026708399101506805

Google Scholar

[22] Li, Qiao, Yuanxiang Zhu, et al, Microstructure and mechanical properties of resistance-welded NiTi/stainless steel joints. Journal of Materials Processing Technology, 249(2017): 538-548.

DOI: 10.1016/j.jmatprotec.2017.07.001

Google Scholar

[23] Li, H. M, Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer. Materials & Design, 39(2012): 285-293.

DOI: 10.1016/j.matdes.2012.02.031

Google Scholar

[24] Zoeram, A. Shojaei, SAA Akbari Mousavi, Laser welding of Ti–6Al–4V to Nitinol. Materials and Design, 61(2014): 185-190.

DOI: 10.1016/j.matdes.2014.04.078

Google Scholar

[25] Oliveira JP, Panton B, Zeng Z, et al, Laser joining of NiTi to Ti6Al4V using a Niobium interlayer. Acta Materialia, 105(2016): 9-15.

DOI: 10.1016/j.actamat.2015.12.021

Google Scholar

[26] Zoeram, A. Shojaei, and SAA Akbari Mousavi Effect of interlayer thickness on microstructure and mechanical properties of as welded Ti6Al4V/Cu/NiTi joints. Materials Letters, 133(2014): 5-8.

DOI: 10.1016/j.matlet.2014.06.141

Google Scholar

[27] Zeng Z, Oliveira JP, Yang M, et al, Functional fatigue behavior of NiTi-Cu dissimilar laser welds. Materials & Design, 114(2017).: 282-287.

DOI: 10.1016/j.matdes.2016.11.023

Google Scholar

[28] Meshram, S. D., T. Mohandas, G. Madhusudhan Reddy , Friction welding of dissimilar pure metals. Journal of Materials Processing Technology,184.3(2007): 330-337.

DOI: 10.1016/j.jmatprotec.2006.11.123

Google Scholar

[29] Bae, I., Kim, B. H., Kim, D. G., et al, Salt Heat Treatment and Passivation to Improve the Corrosion Resistance of Nitinol (Ni-Ti). Materials, 2021;14.24(2021): 7789.

DOI: 10.3390/ma14247789

Google Scholar

[30] Dong, P., Yao, R., Yan, Z., et al, Microstructure and corrosion resistance of laser-welded crossed nitinol wires. Materials, 11.5(2018):842.

DOI: 10.3390/ma11050842

Google Scholar

[31] Yang, C., Cao, W., Yang, Z., et al, The study on the anti-corrosion performance of NiTi alloy in human body solution with the fabricating processes of laser irradiation and PDMS modification. Journal of Bionic Engineering, 18.1(2021):77-91.

DOI: 10.1007/s42235-021-0011-5

Google Scholar

[32] Nik Masdek, N. R., Wahab, N. A., Ahmad Nawawi, N., et al, The effect of pH on the corrosion rate of 316L Stainless Steel, Nitinol, and Titanium-6% Aluminum-4% Vanadium in Hank's Solution. Scientific Research Journal, 18.1(2021): 1-13.

DOI: 10.24191/srj.v18i1.11389

Google Scholar

[33] Stanford, M. K ,Preliminary investigation of surface treatments to enhance the wear resistance of 60-nitinol No. E-19245 ,(2016)

Google Scholar

[34] Weaver, J. D., Gutierrez, E. J., Nagaraja, S., et al (2017) Sodium hypochlorite treatment and Nitinol performance for medical devices. Journal of materials engineering and performance, 26.9: 4245-4254.

DOI: 10.1007/s11665-017-2880-7

Google Scholar

[35] Pound, B. G, Pit initiation on nitinol in simulated physiological solutions. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106.4(2018): 1605-1610.

DOI: 10.1002/jbm.b.33974

Google Scholar

[36] Yan, X. J., and Yang, D. Z., Corrosion resistance of a laser spot‐welded joint of NiTi wire in simulated human body fluids. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77.1(2006): 97-102.

DOI: 10.1002/jbm.a.30378

Google Scholar

[37] AL-sahib, N. K. A., and Yousuf, L. S, Effect of Reinforcement Volume Fraction on Physical Properties of Glass/Polyester Composites , (2009)

Google Scholar

[38] Naveen, V. P., Vani, A., Prakasha, V.,et al, Studies on mechanical behaviour of knitted glass-epoxy composites. Journal of reinforced plastics and composites,19.5 (2000): 396-402.

DOI: 10.1106/29b3-nkyh-284e-ewxd

Google Scholar

[39] NAYAK, P. L, Biodegradable Polymers: Opportunities and Challenges. Journal of Macromolecular Science, Part C, 39(3) (1999): 481–505

DOI: 10.1081/MC-100101425

Google Scholar

[40] Zhu, L., Trepanier, C., Pelton, A. R., et al , Oxidation of nitinol and its effect on corrosion resistance. In Proceedings of the ASM Materials and Processes for Medical Device Conference, (2004). 156-161.

Google Scholar

[41] Kim, H. S., and Bush, M. B, The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostructured materials,11.3(1999):361-367.

DOI: 10.1016/s0965-9773(99)00052-5

Google Scholar

[42] Basak, C. B., and Sengupta, A. K, Development of a FDM based code to determine the 3-D size distribution of homogeneously dispersed spherical second phase from microstructure: a case study on nodular cast iron. Scripta materialia, 513(2004):255-260.

DOI: 10.1016/s1359-6462(04)00222-2

Google Scholar

[43] Youssef, K. M., Koch, C. C., and Fedkiw, P. S, Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition. Corrosion Science, 46.1(2004): 51-64.

DOI: 10.1016/s0010-938x(03)00142-2

Google Scholar

[44] Vishwanatha, H. M., Saxena, K. K., Pramanik, A., & Behera, A. (2024). Cryo treatment and corrosion studies of nickel-titanium shape-memory alloy. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 238.3,(2024):1079-1087.

DOI: 10.1177/09544089231159250

Google Scholar

[45] Lelątko, J., Goryczka, T., & Wierzchoń, T. Structure of low temperature nitrided/oxidized layer formed on NiTi shape memory alloy. Solid State Phenomena, 163(2010), 127-130.

DOI: 10.4028/www.scientific.net/ssp.163.127

Google Scholar

[46] Firstov, G. S., Vitchev, R. G., Kumar, H., et al, Surface oxidation of NiTi shape memory alloy. Biomaterials, 23.24(2002): 4863-4871.

DOI: 10.1016/s0142-9612(02)00244-2

Google Scholar

[47] Chu, C. L., Wu, S. K., and Yen, Y. C, Oxidation behavior of equiatomic TiNi alloy in high temperature air environment. Materials Science and Engineering: A, 216.1-2(1996): 193-200.

DOI: 10.1016/0921-5093(96)10409-3

Google Scholar

[48] Zeng, C. L., Li, M. C., Liu, G. Q., et al, Air oxidation of Ni–Ti alloys at 650–850 C. Oxidation of Metals,58.1(2002):171-184.

DOI: 10.1023/a:1016020709500

Google Scholar

[49] Rapisarda E, Bonaccorso A, Tripi T R, et al, The effect of surface treatments of nickel titanium files on wear and cutting efficiency. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 89(2004):363–368.

DOI: 10.1016/s1079-2104(00)70103-x

Google Scholar

[50] Pogrebnjak AD, Bratushka SN, Beresnev VM, et al, Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses. Russ Chem Rev, 82(2013):1135

DOI: 10.1070/rc2013v082n12abeh004344

Google Scholar

[51] Srivastava, S. K, Electrodeposition and characterization of nickel-titanium–zinc ternary alloy from a sulfate bath,11.7(2020):7073-7077.

Google Scholar

[52] Khan, A. N., Muhyuddin, M., and Wadood, A Development and characterization of Nickel–Titanium–Zirconium shape memory alloy for engineering applications. Russian Journal of Non-Ferrous Metals, 58.5(2017):509-515.

DOI: 10.3103/s1067821217050078

Google Scholar