Widely Targeted Metabolomics Analysis of Phenols in Two Types of Bamboo Leaves

Article Preview

Abstract:

For conducting a comprehensive analysis of phenols and their diversity from Phyllostachys glauca McClure leaves (PML) and Pleioblastus argenteostriatus leaves (PAL), this study employed widely targeted metabolomics. The results of widely targeted metabolomics analysis indicate flavonoids and phenolic acids totally accounted for 85.26% are the predominant phenols in bamboo leaves measured. Multivariate statistical methods reveal 187 flavonoids, 97 phenolic acids, and 28 lignans are significantly upregulated in PAL. Consequently, PAL demonstrates a greater potential for the utilization of phenols. Additionally, twenty differential phenols were identified that can effectively distinguish PML and PAL. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis reveals the biosynthetic pathways of the annotated differential phenols. This research offers a reference for the development and use of phenols in two bamboo leaves, potentially enhancing their application in the industries of food, healthcare product, drug etc. It is also a comprehensive report for the phenols in bamboo leaves.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-69

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liang, K., Wang, G., Shen, Z., Wu, J., Zou, N., Yu, H., Yu, S., Chen, F.-S., & Shi, J. (2024). Application of the strip clear-cutting system in a running bamboo (Phyllostachys glauca McClure) forest: feasibility and sustainability assessments. Frontiers in Plant Science, 15, 1335250.

DOI: 10.3389/fpls.2024.1335250

Google Scholar

[2] Ni, Q., Xu, G., Wang, Z., Gao, Q., Wang, S., & Zhang, Y. (2012). Seasonal variations of the antioxidant composition in ground bamboo Sasa argenteastriatus leaves. Int J Mol Sci, 13(2), 2249-2262.

DOI: 10.3390/ijms13022249

Google Scholar

[3] Cao, G., Yu, Y., Wang, H., Liu, J., Zhang, X., Yu, Y., Li, Z., Zhang, Y., & Yang, C. (2022). Effects of Oral Administration of Bamboo (Dendrocalamus membranaceus) Leaf Flavonoids on the Antioxidant Capacity, Caecal Microbiota, and Serum Metabolome of Gallus gallus domesticus. Front Nutr, 9, 848532.

DOI: 10.3389/fnut.2022.848532

Google Scholar

[4] Ye, S., Pan, F., Yao, L., Fang, H., Cheng, Y., Zhang, Z., Chen, Y., & Zhang, A. (2022). Isolation, Characterization of Bamboo Leaf Flavonoids by Size Exclusion Chromatography and Their Antioxidant Properties. Chem Biodivers, 19(9), e202200506.

DOI: 10.1002/cbdv.202200506

Google Scholar

[5] Łyko, L., Olech, M., & Nowak, R. (2022). LC-ESI-MS/MS Characterization of Concentrated Polyphenolic Fractions from Rhododendron luteum and Their Anti-Inflammatory and Antioxidant Activities. Molecules, 27(3).

DOI: 10.3390/molecules27030827

Google Scholar

[6] Zhang, H., Li, Z., Li, C., Chen, R., Liu, T., & Jiang, Y. (2022). Antiviral Effect of Polyphenolic Substances in Geranium wilfordii Maxim against HSV-2 Infection Using in vitro and in silico Approaches. Evid Based Complement Alternat Med, 2022, 7953728.

DOI: 10.1155/2022/7953728

Google Scholar

[7] Popovici, V., Bucur, L., Gîrd, C. E., Popescu, A., Matei, E., Cozaru, G. C., Schröder, V., Ozon, E. A., Fița, A. C., Lupuliasa, D., Aschie, M., Caraiane, A., Botnarciuc, M., & Badea, V. (2022). Phenolic Secondary Metabolites and Antiradical and Antibacterial Activities of Different Extracts of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. Pharmaceuticals (Basel), 15(7).

DOI: 10.3390/ph15070829

Google Scholar

[8] Pernin, A., Bosc, V., Maillard, M. N., & Dubois-Brissonnet, F. (2019). Ferulic Acid and Eugenol Have Different Abilities to Maintain Their Inhibitory Activity Against Listeria monocytogenes in Emulsified Systems. Front Microbiol, 10, 137.

DOI: 10.3389/fmicb.2019.00137

Google Scholar

[9] Van Hoyweghen, L., De Beer, T., Deforce, D., & Heyerick, A. (2012). Phenolic compounds and anti-oxidant capacity of twelve morphologically heterogeneous bamboo species. Phytochem Anal, 23(5), 433-443.

DOI: 10.1002/pca.1377

Google Scholar

[10] Xiong, R. G., Wu, S. X., Cheng, J., Saimaiti, A., Liu, Q., Shang, A., Zhou, D. D., Huang, S. Y., Gan, R. Y., & Li, H. B. (2023). Antioxidant Activities, Phenolic Compounds, and Sensory Acceptability of Kombucha-Fermented Beverages from Bamboo Leaf and Mulberry Leaf. Antioxidants (Basel), 12(8).

DOI: 10.3390/antiox12081573

Google Scholar

[11] Hei, J., Wang, J., Wang, J., Zhang, D., Song, W., Xun, H., Guo, X., & Yao, X. (2024). Five Significant Phenols from Phyllostachys glauca McClure Leaves Extracted Using Ultrasound-Assisted Deep Eutectic Solvent Extraction. Separations, 11(8), 220. https://www.mdpi.com/2297-8739/11/8/220.

DOI: 10.3390/separations11080220

Google Scholar

[12] Ismail, I. T., Showalter, M. R., & Fiehn, O. (2019). Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics. Metabolites, 9(10). https://doi.org/10.3390/ metabo9100242.

DOI: 10.3390/metabo9100242

Google Scholar

[13] Wang, Z., Gan, S., Sun, W., & Chen, Z. (2022). Widely Targeted Metabolomics Analysis Reveals the Differences of Nonvolatile Compounds in Oolong Tea in Different Production Areas. Foods, 11(7), 1057. https://www.mdpi.com/2304-8158/11/7/1057.

DOI: 10.3390/foods11071057

Google Scholar

[14] Fu, J., Zhu, F., Xu, C. J., & Li, Y. (2023). Metabolomics meets systems immunology. EMBO Rep, 24(4), e55747.

DOI: 10.15252/embr.202255747

Google Scholar

[15] Zhou, J., Hou, D., Zou, W., Wang, J., Luo, R., Wang, M., & Yu, H. (2022). Comparison of Widely Targeted Metabolomics and Untargeted Metabolomics of Wild Ophiocordyceps sinensis. Molecules, 27(11), 3645. https://www.mdpi.com/1420-3049/27/11/3645.

DOI: 10.3390/molecules27113645

Google Scholar

[16] Qu, C., Li, W., Yang, Q., Xia, Y., Lu, P., & Hu, M. (2022). Metabolic mechanism of nitrogen modified atmosphere storage on delaying quality deterioration of rice grains. Food Chem X, 16, 100519.

DOI: 10.1016/j.fochx.2022.100519

Google Scholar

[17] Wu, H., Zhang, W., Lin, H., Ye, Q., Guo, J., & Quan, S. (2022). The Pseudotargeted Metabolomics Study on the Toxicity of Fuzi Using Ultraperformance Liquid Chromatography Tandem Mass Spectrometry. Evid Based Complement Alternat Med, 2022, 6539675.

DOI: 10.1155/2022/6539675

Google Scholar

[18] Qi, Y., Guo, X.-Y., Xu, X.-Y., Hou, J.-X., Liu, S.-L., Guo, H.-B., Xu, A.-G., Yang, R.-H., & Yu, X.-D. (2024). Widely targeted metabolomics analysis of Sanghuangporus vaninii mycelia and fruiting bodies at different harvest stages [Original Research]. Frontiers in Microbiology, 15.

DOI: 10.3389/fmicb.2024.1391558

Google Scholar

[19] Qi, S., Zeng, T., Wu, P., Sun, L., Dong, Z., Xu, L., & Xiao, P. (2024). Widely targeted metabolomic analysis reveals effects of yellowing process time on the flavor of vine tea (Ampelopsis grossedentata). Food Chemistry: X, 22, 101446. https://doi.org/.

DOI: 10.1016/j.fochx.2024.101446

Google Scholar

[20] Wang, J., Wang, D., Huang, M., Sun, B., Ren, F., Wu, J., Meng, N., & Zhang, J. (2023). Identification of nonvolatile chemical constituents in Chinese Huangjiu using widely targeted metabolomics. Food Research International, 172, 113226. https://doi.org/https://doi.org/.

DOI: 10.1016/j.foodres.2023.113226

Google Scholar

[21] Zhai, H., Dong, W., Fu, X., Li, G., & Hu, F. (2024). Integration of widely targeted metabolomics and the e-tongue reveals the chemical variation and taste quality of Yunnan Arabica coffee prepared using different primary processing methods. Food Chemistry: X, 22, 101286. https://doi.org/.

DOI: 10.1016/j.fochx.2024.101286

Google Scholar

[22] Zhang, S., Wu, Y., Ren, Y., Xu, Y., An, H., Zhao, Q., Wang, Y., & Li, H. (2024). Widely metabolomic combined with transcriptome analysis to build a bioactive compound regulatory network for the fruit growth cycle in Pseudocydonia sinensis. Food Chemistry, 456, 139933. https://doi.org/.

DOI: 10.1016/j.foodchem.2024.139933

Google Scholar

[23] Baj, J., Forma, A., Kowalska, B., Teresiński, G., Buszewicz, G., Majerek, D., Flieger, W., Maciejewski, R., Karakuła, K., Flieger, M., Czeczelewski, M., Kędzierawski, P., & Flieger, J. (2022). Multi-Elemental Analysis of Human Optic Chiasm-A New Perspective to Reveal the Pathomechanism of Nerve Fibers' Degeneration. Int J Environ Res Public Health, 19(7).

DOI: 10.3390/ijerph19074420

Google Scholar

[24] Bukhari, N. A., Al-Otaibi, R. A., & Ibhrahim, M. M. (2017). Phytochemical and taxonomic evaluation of Rhazya stricta in Saudi Arabia. Saudi J Biol Sci, 24(7), 1513-1521.

DOI: 10.1016/j.sjbs.2015.10.017

Google Scholar

[25] Gerdle, B., Ghafouri, B., Lund, E., Bengtsson, A., Lundberg, P., Ettinger-Veenstra, H. V., Leinhard, O. D., & Forsgren, M. F. (2020). Evidence of Mitochondrial Dysfunction in Fibromyalgia: Deviating Muscle Energy Metabolism Detected Using Microdialysis and Magnetic Resonance. J Clin Med, 9(11).

DOI: 10.3390/jcm9113527

Google Scholar

[26] Lomnytska, M., Pinto, R., Becker, S., Engström, U., Gustafsson, S., Björklund, C., Templin, M., Bergstrand, J., Xu, L., Widengren, J., Epstein, E., Franzén, B., & Auer, G. (2018). Platelet protein biomarker panel for ovarian cancer diagnosis. Biomark Res, 6, 2.

DOI: 10.1186/s40364-018-0118-y

Google Scholar

[27] Djulbegovic, M. B., & Uversky, V. N. (2020). Expanding the understanding of the heterogeneous nature of melanoma with bioinformatics and disorder-based proteomics. Int J Biol Macromol, 150, 1281-1293.

DOI: 10.1016/j.ijbiomac.2019.10.139

Google Scholar

[28] Sun, C., Luo, J., Jia, T., Hou, C., Li, Y., Zhang, Q., & Wang, H. (2022). Water-resistant and underwater adhesive ion-conducting gel for motion-robust bioelectric monitoring. Chemical Engineering Journal, 431, 134012. https://doi.org/.

DOI: 10.1016/j.cej.2021.134012

Google Scholar

[29] Wang, J., Yue, Y. D., Tang, F., & Sun, J. (2012). TLC screening for antioxidant activity of extracts from fifteen bamboo species and identification of antioxidant flavone glycosides from leaves of Bambusa. textilis McClure. Molecules, 17(10), 12297-12311.

DOI: 10.3390/molecules171012297

Google Scholar

[30] Fang, X., Li, Y., Qiao, J., Guo, Y., & Miao, M. (2017). Neuroprotective effect of total flavonoids from Ilex pubescens against focal cerebral ischemia/reperfusion injury in rats. Mol Med Rep, 16(5), 7439-7449.

DOI: 10.3892/mmr.2017.7540

Google Scholar

[31] Mahendran, S., Maheswari, P., Sasikala, V., Rubika, J. j., & Pandiarajan, J. (2021). In vitro antioxidant study of polyphenol from red seaweeds dichotomously branched gracilaria Gracilaria edulis and robust sea moss Hypnea valentiae. Toxicology Reports, 8, 1404-1411. https://doi.org/.

DOI: 10.1016/j.toxrep.2021.07.006

Google Scholar

[32] Dobrecky, C., Marchini, T., Ricco, R., Garcés, M., Gadano, A., Carballo, M., Wagner, M., Lucangioli, S., & Evelson, P. (2020). Antioxidant Activity of Flavonoid Rich Fraction of Ligaria cuneifolia (Loranthaceae). Chem Biodivers, 17(10), e2000302. https://doi.org/10.1002/ cbdv.202000302.

DOI: 10.1002/cbdv.202000302

Google Scholar

[33] Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules, 27(9).

DOI: 10.3390/molecules27092901

Google Scholar

[34] Zhang, T., Jia, C., Ran, L., Shi, J., Amarmend, T., & Li, H. (2024). The alleviative effects comparison of four flavonoids from bamboo leaves on ulcerative colitis in an Alzheimer mouse model. CNS Neurosci Ther, 30(2), e14620.

DOI: 10.1111/cns.14620

Google Scholar

[35] Qian, J., Zhu, H., Zhang, J., Zhao, C., Li, X., & Guo, H. (2023). Separation and Purification of Bamboo Leaf Flavones by Polyvinylpolypyrrolidone Adsorption. J Chromatogr Sci, 61(9), 885-891.

DOI: 10.1093/chromsci/bmad027

Google Scholar

[36] Shu, G., Kong, F., Xu, D., Yin, L., He, C., Lin, J., Fu, H., Wang, K., Tian, Y., & Zhao, X. (2020). Bamboo leaf flavone changed the community of cecum microbiota and improved the immune function in broilers. Sci Rep, 10(1), 12324.

DOI: 10.1038/s41598-020-69010-1

Google Scholar

[37] Ye, S., Pan, F., Yao, L., Fang, H., Cheng, Y., Zhang, Z., Chen, Y., & Zhang, A. (2022). Isolation, Characterization of Bamboo Leaf Flavonoids by Size Exclusion Chromatography and Their Antioxidant Properties. Chem Biodivers, 19 (9), e202200506. https://doi.org/10.1002/cbdv. 202200506.

DOI: 10.1002/cbdv.202200506

Google Scholar

[38] Li, R., Xia, Z., Li, B., Tian, Y., Zhang, G., Li, M., & Dong, J. (2021). Advances in Supercritical Carbon Dioxide Extraction of Bioactive Substances from Different Parts of Ginkgo biloba L. Molecules, 26(13).

DOI: 10.3390/molecules26134011

Google Scholar

[39] Shao, S. Y., Wang, J., Yao, X., Xun, H., & Guo, X. F. (2024). Characterization and identification of major flavonoids of bamboo leaf extract by HPLC/ESI-QTOF-MS/MS. J Asian Nat Prod Res, 26(10), 1147-1159.

DOI: 10.1080/10286020.2024.2360039

Google Scholar

[40] Yuan, T., Guo, X.-F., Shao, S.-Y., An, R.-M., Wang, J., & Sun, J. (2021). Characterization and identification of flavonoids from Bambusa chungii leaves extract by UPLC-ESI-Q-TOF-MS/MS. Acta Chromatographica AChrom, 33(3), 281-294. https://doi.org/https://doi.org/.

DOI: 10.1556/1326.2020.00777

Google Scholar

[41] Afnan, Saleem, A., Akhtar, M. F., Sharif, A., Akhtar, B., Siddique, R., Ashraf, G. M., Alghamdi, B. S., & Alharthy, S. A. (2022). Anticancer, Cardio-Protective and Anti-Inflammatory Potential of Natural-Sources-Derived Phenolic Acids. Molecules, 27(21). https://doi.org/10.3390/ molecules27217286.

DOI: 10.3390/molecules27217286

Google Scholar

[42] Sarikurkcu, C., Erdoğmuş, S. F., & Yazar, T. (2024). Phytochemical analysis and in vitro anti-inflammatory, anticancer activities of Marrubium lutescens on melanoma cancer cell line and molecular docking studies. Journal of Herbal Medicine, 46, 100907. https://doi.org/.

DOI: 10.1016/j.hermed.2024.100907

Google Scholar

[43] Yeasmin, L., Ali, M. N., Gantait, S., & Chakraborty, S. (2015). Bamboo: an overview on its genetic diversity and characterization. 3 Biotech, 5(1), 1-11.

DOI: 10.1007/s13205-014-0201-5

Google Scholar

[44] Ma, N.-H., Guo, J., Chen, S.-H., Yuan, X.-R., Zhang, T., & Ding, Y. (2020). Antioxidant and Compositional HPLC Analysis of Three Common Bamboo Leaves. Molecules, 25, 409.

DOI: 10.3390/molecules25020409

Google Scholar

[45] Pande, H., Kumar, B., & Varshney, V. K. (2018). HPLC-ESI-QTOF-MS analysis of phenolic compounds, antioxidant capacity and a-glucosidase inhibitory effect of bambusa nutans leaves. Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 57, 988-996.

Google Scholar

[46] Zhou, Y., Chen, M., Huo, X., Xu, Q., Wu, L., & Wang, L. (2023). Separation of Flavonoids and Purification of Chlorogenic Acid from Bamboo Leaves Extraction Residues by Combination of Macroporous Resin and High-Speed Counter-Current Chromatography. Molecules, 28(11), 4443. https://www.mdpi.com/1420-3049/28/11/4443.

DOI: 10.3390/molecules28114443

Google Scholar

[47] Kim, H., Park, J., Kang, H., Yun, S. P., Lee, Y.-S., Lee, Y.-I., & Lee, Y. (2020). Activation of the Akt1-CREB pathway promotes <i>RNF146</i> expression to inhibit PARP1-mediated neuronal death. Science Signaling, 13(663), eaax7119. https://doi.org/doi:10.1126/ scis.ignal.aax7119.

DOI: 10.1126/scisignal.aax7119

Google Scholar

[48] Song, K. H., Seo, C. S., Yang, W. K., Gu, H. O., Kim, K. J., & Kim, S. H. (2021). Extracts of Phyllostachys pubescens Leaves Represses Human Steroid 5-Alpha Reductase Type 2 Promoter Activity in BHP-1 Cells and Ameliorates Testosterone-Induced Benign Prostatic Hyperplasia in Rat Model. Nutrients, 13(3).

DOI: 10.3390/nu13030884

Google Scholar

[49] Yang, J. P., He, H., & Lu, Y. H. (2014). Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms. J Agric Food Chem, 62(31), 7760-7770.

DOI: 10.1021/jf501931m

Google Scholar

[50] Cui, Q., Du, R., Liu, M., & Rong, L. (2020). Lignans and Their Derivatives from Plants as Antivirals. Molecules, 25(1).

DOI: 10.3390/molecules25010183

Google Scholar

[51] Awasthi, S., Kaushik, N., Plaha, N. S., Kaur, V., & Kumar, A. (2024). Exploring lipid health indices and protein quality in ninety Indian linseed varieties by comprehensive analysis of fatty acid composition, lignan content, and amino acid composition. Industrial Crops and Products, 212, 118366. https://doi.org/.

DOI: 10.1016/j.indcrop.2024.118366

Google Scholar

[52] Ferraz, A. C., Gomes, P. W. P., Menegatto, M. B. d. S., Lima, R. L. S., Guimarães, P. H., Reis, J. D. E., Carvalho, A. R. V., Pamplona, S. d. G. S. R., Muribeca, A. d. J. B., de Magalhães, J. C., Yoshioka e Silva, C. Y., da Silva, M. N., & Magalhães, C. L. d. B. (2024). Exploring the antiviral potential of justicidin B and four glycosylated lignans from Phyllanthus brasiliensis against Zika virus: A promising pharmacological approach. Phytomedicine, 123, 155197. https://doi.org/.

DOI: 10.1016/j.phymed.2023.155197

Google Scholar

[53] Sierra, E. J. T., Cordeiro, C. F., de Figueiredo Diniz, L., Caldas, I. S., Hawkes, J. A., & Carvalho, D. T. (2021). Coumarins as Potential Antiprotozoal Agents: Biological Activities and Mechanism of Action. Revista Brasileira de Farmacognosia, 31(5), 592-611.

DOI: 10.1007/s43450-021-00169-y

Google Scholar

[54] Santos Junior, C. M., Silva, S. M. C., Sales, E. M., Velozo, E. d. S., dos Santos, E. K. P., Canuto, G. A. B., Azeredo, F. J., Barros, T. F., & Biegelmeyer, R. (2023). Coumarins from Rutaceae: Chemical diversity and biological activities. Fitoterapia, 168, 105489. https://doi.org/.

DOI: 10.1016/j.fitote.2023.105489

Google Scholar

[55] Li, W., Wen, L., Chen, Z., Zhang, Z., Pang, X., Deng, Z., Liu, T., & Guo, Y. (2021). Study on metabolic variation in whole grains of four proso millet varieties reveals metabolites important for antioxidant properties and quality traits. Food Chemistry, 357, 129791. https://doi.org/.

DOI: 10.1016/j.foodchem.2021.129791

Google Scholar