[1]
Liang, K., Wang, G., Shen, Z., Wu, J., Zou, N., Yu, H., Yu, S., Chen, F.-S., & Shi, J. (2024). Application of the strip clear-cutting system in a running bamboo (Phyllostachys glauca McClure) forest: feasibility and sustainability assessments. Frontiers in Plant Science, 15, 1335250.
DOI: 10.3389/fpls.2024.1335250
Google Scholar
[2]
Ni, Q., Xu, G., Wang, Z., Gao, Q., Wang, S., & Zhang, Y. (2012). Seasonal variations of the antioxidant composition in ground bamboo Sasa argenteastriatus leaves. Int J Mol Sci, 13(2), 2249-2262.
DOI: 10.3390/ijms13022249
Google Scholar
[3]
Cao, G., Yu, Y., Wang, H., Liu, J., Zhang, X., Yu, Y., Li, Z., Zhang, Y., & Yang, C. (2022). Effects of Oral Administration of Bamboo (Dendrocalamus membranaceus) Leaf Flavonoids on the Antioxidant Capacity, Caecal Microbiota, and Serum Metabolome of Gallus gallus domesticus. Front Nutr, 9, 848532.
DOI: 10.3389/fnut.2022.848532
Google Scholar
[4]
Ye, S., Pan, F., Yao, L., Fang, H., Cheng, Y., Zhang, Z., Chen, Y., & Zhang, A. (2022). Isolation, Characterization of Bamboo Leaf Flavonoids by Size Exclusion Chromatography and Their Antioxidant Properties. Chem Biodivers, 19(9), e202200506.
DOI: 10.1002/cbdv.202200506
Google Scholar
[5]
Łyko, L., Olech, M., & Nowak, R. (2022). LC-ESI-MS/MS Characterization of Concentrated Polyphenolic Fractions from Rhododendron luteum and Their Anti-Inflammatory and Antioxidant Activities. Molecules, 27(3).
DOI: 10.3390/molecules27030827
Google Scholar
[6]
Zhang, H., Li, Z., Li, C., Chen, R., Liu, T., & Jiang, Y. (2022). Antiviral Effect of Polyphenolic Substances in Geranium wilfordii Maxim against HSV-2 Infection Using in vitro and in silico Approaches. Evid Based Complement Alternat Med, 2022, 7953728.
DOI: 10.1155/2022/7953728
Google Scholar
[7]
Popovici, V., Bucur, L., Gîrd, C. E., Popescu, A., Matei, E., Cozaru, G. C., Schröder, V., Ozon, E. A., Fița, A. C., Lupuliasa, D., Aschie, M., Caraiane, A., Botnarciuc, M., & Badea, V. (2022). Phenolic Secondary Metabolites and Antiradical and Antibacterial Activities of Different Extracts of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. Pharmaceuticals (Basel), 15(7).
DOI: 10.3390/ph15070829
Google Scholar
[8]
Pernin, A., Bosc, V., Maillard, M. N., & Dubois-Brissonnet, F. (2019). Ferulic Acid and Eugenol Have Different Abilities to Maintain Their Inhibitory Activity Against Listeria monocytogenes in Emulsified Systems. Front Microbiol, 10, 137.
DOI: 10.3389/fmicb.2019.00137
Google Scholar
[9]
Van Hoyweghen, L., De Beer, T., Deforce, D., & Heyerick, A. (2012). Phenolic compounds and anti-oxidant capacity of twelve morphologically heterogeneous bamboo species. Phytochem Anal, 23(5), 433-443.
DOI: 10.1002/pca.1377
Google Scholar
[10]
Xiong, R. G., Wu, S. X., Cheng, J., Saimaiti, A., Liu, Q., Shang, A., Zhou, D. D., Huang, S. Y., Gan, R. Y., & Li, H. B. (2023). Antioxidant Activities, Phenolic Compounds, and Sensory Acceptability of Kombucha-Fermented Beverages from Bamboo Leaf and Mulberry Leaf. Antioxidants (Basel), 12(8).
DOI: 10.3390/antiox12081573
Google Scholar
[11]
Hei, J., Wang, J., Wang, J., Zhang, D., Song, W., Xun, H., Guo, X., & Yao, X. (2024). Five Significant Phenols from Phyllostachys glauca McClure Leaves Extracted Using Ultrasound-Assisted Deep Eutectic Solvent Extraction. Separations, 11(8), 220. https://www.mdpi.com/2297-8739/11/8/220.
DOI: 10.3390/separations11080220
Google Scholar
[12]
Ismail, I. T., Showalter, M. R., & Fiehn, O. (2019). Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics. Metabolites, 9(10). https://doi.org/10.3390/ metabo9100242.
DOI: 10.3390/metabo9100242
Google Scholar
[13]
Wang, Z., Gan, S., Sun, W., & Chen, Z. (2022). Widely Targeted Metabolomics Analysis Reveals the Differences of Nonvolatile Compounds in Oolong Tea in Different Production Areas. Foods, 11(7), 1057. https://www.mdpi.com/2304-8158/11/7/1057.
DOI: 10.3390/foods11071057
Google Scholar
[14]
Fu, J., Zhu, F., Xu, C. J., & Li, Y. (2023). Metabolomics meets systems immunology. EMBO Rep, 24(4), e55747.
DOI: 10.15252/embr.202255747
Google Scholar
[15]
Zhou, J., Hou, D., Zou, W., Wang, J., Luo, R., Wang, M., & Yu, H. (2022). Comparison of Widely Targeted Metabolomics and Untargeted Metabolomics of Wild Ophiocordyceps sinensis. Molecules, 27(11), 3645. https://www.mdpi.com/1420-3049/27/11/3645.
DOI: 10.3390/molecules27113645
Google Scholar
[16]
Qu, C., Li, W., Yang, Q., Xia, Y., Lu, P., & Hu, M. (2022). Metabolic mechanism of nitrogen modified atmosphere storage on delaying quality deterioration of rice grains. Food Chem X, 16, 100519.
DOI: 10.1016/j.fochx.2022.100519
Google Scholar
[17]
Wu, H., Zhang, W., Lin, H., Ye, Q., Guo, J., & Quan, S. (2022). The Pseudotargeted Metabolomics Study on the Toxicity of Fuzi Using Ultraperformance Liquid Chromatography Tandem Mass Spectrometry. Evid Based Complement Alternat Med, 2022, 6539675.
DOI: 10.1155/2022/6539675
Google Scholar
[18]
Qi, Y., Guo, X.-Y., Xu, X.-Y., Hou, J.-X., Liu, S.-L., Guo, H.-B., Xu, A.-G., Yang, R.-H., & Yu, X.-D. (2024). Widely targeted metabolomics analysis of Sanghuangporus vaninii mycelia and fruiting bodies at different harvest stages [Original Research]. Frontiers in Microbiology, 15.
DOI: 10.3389/fmicb.2024.1391558
Google Scholar
[19]
Qi, S., Zeng, T., Wu, P., Sun, L., Dong, Z., Xu, L., & Xiao, P. (2024). Widely targeted metabolomic analysis reveals effects of yellowing process time on the flavor of vine tea (Ampelopsis grossedentata). Food Chemistry: X, 22, 101446. https://doi.org/.
DOI: 10.1016/j.fochx.2024.101446
Google Scholar
[20]
Wang, J., Wang, D., Huang, M., Sun, B., Ren, F., Wu, J., Meng, N., & Zhang, J. (2023). Identification of nonvolatile chemical constituents in Chinese Huangjiu using widely targeted metabolomics. Food Research International, 172, 113226. https://doi.org/https://doi.org/.
DOI: 10.1016/j.foodres.2023.113226
Google Scholar
[21]
Zhai, H., Dong, W., Fu, X., Li, G., & Hu, F. (2024). Integration of widely targeted metabolomics and the e-tongue reveals the chemical variation and taste quality of Yunnan Arabica coffee prepared using different primary processing methods. Food Chemistry: X, 22, 101286. https://doi.org/.
DOI: 10.1016/j.fochx.2024.101286
Google Scholar
[22]
Zhang, S., Wu, Y., Ren, Y., Xu, Y., An, H., Zhao, Q., Wang, Y., & Li, H. (2024). Widely metabolomic combined with transcriptome analysis to build a bioactive compound regulatory network for the fruit growth cycle in Pseudocydonia sinensis. Food Chemistry, 456, 139933. https://doi.org/.
DOI: 10.1016/j.foodchem.2024.139933
Google Scholar
[23]
Baj, J., Forma, A., Kowalska, B., Teresiński, G., Buszewicz, G., Majerek, D., Flieger, W., Maciejewski, R., Karakuła, K., Flieger, M., Czeczelewski, M., Kędzierawski, P., & Flieger, J. (2022). Multi-Elemental Analysis of Human Optic Chiasm-A New Perspective to Reveal the Pathomechanism of Nerve Fibers' Degeneration. Int J Environ Res Public Health, 19(7).
DOI: 10.3390/ijerph19074420
Google Scholar
[24]
Bukhari, N. A., Al-Otaibi, R. A., & Ibhrahim, M. M. (2017). Phytochemical and taxonomic evaluation of Rhazya stricta in Saudi Arabia. Saudi J Biol Sci, 24(7), 1513-1521.
DOI: 10.1016/j.sjbs.2015.10.017
Google Scholar
[25]
Gerdle, B., Ghafouri, B., Lund, E., Bengtsson, A., Lundberg, P., Ettinger-Veenstra, H. V., Leinhard, O. D., & Forsgren, M. F. (2020). Evidence of Mitochondrial Dysfunction in Fibromyalgia: Deviating Muscle Energy Metabolism Detected Using Microdialysis and Magnetic Resonance. J Clin Med, 9(11).
DOI: 10.3390/jcm9113527
Google Scholar
[26]
Lomnytska, M., Pinto, R., Becker, S., Engström, U., Gustafsson, S., Björklund, C., Templin, M., Bergstrand, J., Xu, L., Widengren, J., Epstein, E., Franzén, B., & Auer, G. (2018). Platelet protein biomarker panel for ovarian cancer diagnosis. Biomark Res, 6, 2.
DOI: 10.1186/s40364-018-0118-y
Google Scholar
[27]
Djulbegovic, M. B., & Uversky, V. N. (2020). Expanding the understanding of the heterogeneous nature of melanoma with bioinformatics and disorder-based proteomics. Int J Biol Macromol, 150, 1281-1293.
DOI: 10.1016/j.ijbiomac.2019.10.139
Google Scholar
[28]
Sun, C., Luo, J., Jia, T., Hou, C., Li, Y., Zhang, Q., & Wang, H. (2022). Water-resistant and underwater adhesive ion-conducting gel for motion-robust bioelectric monitoring. Chemical Engineering Journal, 431, 134012. https://doi.org/.
DOI: 10.1016/j.cej.2021.134012
Google Scholar
[29]
Wang, J., Yue, Y. D., Tang, F., & Sun, J. (2012). TLC screening for antioxidant activity of extracts from fifteen bamboo species and identification of antioxidant flavone glycosides from leaves of Bambusa. textilis McClure. Molecules, 17(10), 12297-12311.
DOI: 10.3390/molecules171012297
Google Scholar
[30]
Fang, X., Li, Y., Qiao, J., Guo, Y., & Miao, M. (2017). Neuroprotective effect of total flavonoids from Ilex pubescens against focal cerebral ischemia/reperfusion injury in rats. Mol Med Rep, 16(5), 7439-7449.
DOI: 10.3892/mmr.2017.7540
Google Scholar
[31]
Mahendran, S., Maheswari, P., Sasikala, V., Rubika, J. j., & Pandiarajan, J. (2021). In vitro antioxidant study of polyphenol from red seaweeds dichotomously branched gracilaria Gracilaria edulis and robust sea moss Hypnea valentiae. Toxicology Reports, 8, 1404-1411. https://doi.org/.
DOI: 10.1016/j.toxrep.2021.07.006
Google Scholar
[32]
Dobrecky, C., Marchini, T., Ricco, R., Garcés, M., Gadano, A., Carballo, M., Wagner, M., Lucangioli, S., & Evelson, P. (2020). Antioxidant Activity of Flavonoid Rich Fraction of Ligaria cuneifolia (Loranthaceae). Chem Biodivers, 17(10), e2000302. https://doi.org/10.1002/ cbdv.202000302.
DOI: 10.1002/cbdv.202000302
Google Scholar
[33]
Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules, 27(9).
DOI: 10.3390/molecules27092901
Google Scholar
[34]
Zhang, T., Jia, C., Ran, L., Shi, J., Amarmend, T., & Li, H. (2024). The alleviative effects comparison of four flavonoids from bamboo leaves on ulcerative colitis in an Alzheimer mouse model. CNS Neurosci Ther, 30(2), e14620.
DOI: 10.1111/cns.14620
Google Scholar
[35]
Qian, J., Zhu, H., Zhang, J., Zhao, C., Li, X., & Guo, H. (2023). Separation and Purification of Bamboo Leaf Flavones by Polyvinylpolypyrrolidone Adsorption. J Chromatogr Sci, 61(9), 885-891.
DOI: 10.1093/chromsci/bmad027
Google Scholar
[36]
Shu, G., Kong, F., Xu, D., Yin, L., He, C., Lin, J., Fu, H., Wang, K., Tian, Y., & Zhao, X. (2020). Bamboo leaf flavone changed the community of cecum microbiota and improved the immune function in broilers. Sci Rep, 10(1), 12324.
DOI: 10.1038/s41598-020-69010-1
Google Scholar
[37]
Ye, S., Pan, F., Yao, L., Fang, H., Cheng, Y., Zhang, Z., Chen, Y., & Zhang, A. (2022). Isolation, Characterization of Bamboo Leaf Flavonoids by Size Exclusion Chromatography and Their Antioxidant Properties. Chem Biodivers, 19 (9), e202200506. https://doi.org/10.1002/cbdv. 202200506.
DOI: 10.1002/cbdv.202200506
Google Scholar
[38]
Li, R., Xia, Z., Li, B., Tian, Y., Zhang, G., Li, M., & Dong, J. (2021). Advances in Supercritical Carbon Dioxide Extraction of Bioactive Substances from Different Parts of Ginkgo biloba L. Molecules, 26(13).
DOI: 10.3390/molecules26134011
Google Scholar
[39]
Shao, S. Y., Wang, J., Yao, X., Xun, H., & Guo, X. F. (2024). Characterization and identification of major flavonoids of bamboo leaf extract by HPLC/ESI-QTOF-MS/MS. J Asian Nat Prod Res, 26(10), 1147-1159.
DOI: 10.1080/10286020.2024.2360039
Google Scholar
[40]
Yuan, T., Guo, X.-F., Shao, S.-Y., An, R.-M., Wang, J., & Sun, J. (2021). Characterization and identification of flavonoids from Bambusa chungii leaves extract by UPLC-ESI-Q-TOF-MS/MS. Acta Chromatographica AChrom, 33(3), 281-294. https://doi.org/https://doi.org/.
DOI: 10.1556/1326.2020.00777
Google Scholar
[41]
Afnan, Saleem, A., Akhtar, M. F., Sharif, A., Akhtar, B., Siddique, R., Ashraf, G. M., Alghamdi, B. S., & Alharthy, S. A. (2022). Anticancer, Cardio-Protective and Anti-Inflammatory Potential of Natural-Sources-Derived Phenolic Acids. Molecules, 27(21). https://doi.org/10.3390/ molecules27217286.
DOI: 10.3390/molecules27217286
Google Scholar
[42]
Sarikurkcu, C., Erdoğmuş, S. F., & Yazar, T. (2024). Phytochemical analysis and in vitro anti-inflammatory, anticancer activities of Marrubium lutescens on melanoma cancer cell line and molecular docking studies. Journal of Herbal Medicine, 46, 100907. https://doi.org/.
DOI: 10.1016/j.hermed.2024.100907
Google Scholar
[43]
Yeasmin, L., Ali, M. N., Gantait, S., & Chakraborty, S. (2015). Bamboo: an overview on its genetic diversity and characterization. 3 Biotech, 5(1), 1-11.
DOI: 10.1007/s13205-014-0201-5
Google Scholar
[44]
Ma, N.-H., Guo, J., Chen, S.-H., Yuan, X.-R., Zhang, T., & Ding, Y. (2020). Antioxidant and Compositional HPLC Analysis of Three Common Bamboo Leaves. Molecules, 25, 409.
DOI: 10.3390/molecules25020409
Google Scholar
[45]
Pande, H., Kumar, B., & Varshney, V. K. (2018). HPLC-ESI-QTOF-MS analysis of phenolic compounds, antioxidant capacity and a-glucosidase inhibitory effect of bambusa nutans leaves. Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 57, 988-996.
Google Scholar
[46]
Zhou, Y., Chen, M., Huo, X., Xu, Q., Wu, L., & Wang, L. (2023). Separation of Flavonoids and Purification of Chlorogenic Acid from Bamboo Leaves Extraction Residues by Combination of Macroporous Resin and High-Speed Counter-Current Chromatography. Molecules, 28(11), 4443. https://www.mdpi.com/1420-3049/28/11/4443.
DOI: 10.3390/molecules28114443
Google Scholar
[47]
Kim, H., Park, J., Kang, H., Yun, S. P., Lee, Y.-S., Lee, Y.-I., & Lee, Y. (2020). Activation of the Akt1-CREB pathway promotes <i>RNF146</i> expression to inhibit PARP1-mediated neuronal death. Science Signaling, 13(663), eaax7119. https://doi.org/doi:10.1126/ scis.ignal.aax7119.
DOI: 10.1126/scisignal.aax7119
Google Scholar
[48]
Song, K. H., Seo, C. S., Yang, W. K., Gu, H. O., Kim, K. J., & Kim, S. H. (2021). Extracts of Phyllostachys pubescens Leaves Represses Human Steroid 5-Alpha Reductase Type 2 Promoter Activity in BHP-1 Cells and Ameliorates Testosterone-Induced Benign Prostatic Hyperplasia in Rat Model. Nutrients, 13(3).
DOI: 10.3390/nu13030884
Google Scholar
[49]
Yang, J. P., He, H., & Lu, Y. H. (2014). Four flavonoid compounds from Phyllostachys edulis leaf extract retard the digestion of starch and its working mechanisms. J Agric Food Chem, 62(31), 7760-7770.
DOI: 10.1021/jf501931m
Google Scholar
[50]
Cui, Q., Du, R., Liu, M., & Rong, L. (2020). Lignans and Their Derivatives from Plants as Antivirals. Molecules, 25(1).
DOI: 10.3390/molecules25010183
Google Scholar
[51]
Awasthi, S., Kaushik, N., Plaha, N. S., Kaur, V., & Kumar, A. (2024). Exploring lipid health indices and protein quality in ninety Indian linseed varieties by comprehensive analysis of fatty acid composition, lignan content, and amino acid composition. Industrial Crops and Products, 212, 118366. https://doi.org/.
DOI: 10.1016/j.indcrop.2024.118366
Google Scholar
[52]
Ferraz, A. C., Gomes, P. W. P., Menegatto, M. B. d. S., Lima, R. L. S., Guimarães, P. H., Reis, J. D. E., Carvalho, A. R. V., Pamplona, S. d. G. S. R., Muribeca, A. d. J. B., de Magalhães, J. C., Yoshioka e Silva, C. Y., da Silva, M. N., & Magalhães, C. L. d. B. (2024). Exploring the antiviral potential of justicidin B and four glycosylated lignans from Phyllanthus brasiliensis against Zika virus: A promising pharmacological approach. Phytomedicine, 123, 155197. https://doi.org/.
DOI: 10.1016/j.phymed.2023.155197
Google Scholar
[53]
Sierra, E. J. T., Cordeiro, C. F., de Figueiredo Diniz, L., Caldas, I. S., Hawkes, J. A., & Carvalho, D. T. (2021). Coumarins as Potential Antiprotozoal Agents: Biological Activities and Mechanism of Action. Revista Brasileira de Farmacognosia, 31(5), 592-611.
DOI: 10.1007/s43450-021-00169-y
Google Scholar
[54]
Santos Junior, C. M., Silva, S. M. C., Sales, E. M., Velozo, E. d. S., dos Santos, E. K. P., Canuto, G. A. B., Azeredo, F. J., Barros, T. F., & Biegelmeyer, R. (2023). Coumarins from Rutaceae: Chemical diversity and biological activities. Fitoterapia, 168, 105489. https://doi.org/.
DOI: 10.1016/j.fitote.2023.105489
Google Scholar
[55]
Li, W., Wen, L., Chen, Z., Zhang, Z., Pang, X., Deng, Z., Liu, T., & Guo, Y. (2021). Study on metabolic variation in whole grains of four proso millet varieties reveals metabolites important for antioxidant properties and quality traits. Food Chemistry, 357, 129791. https://doi.org/.
DOI: 10.1016/j.foodchem.2021.129791
Google Scholar