Preparation and Application of Geopolymer Binders from Industrial Waste

Article Preview

Abstract:

The effective recycling of industrial waste is a globally significant issue. In this study, a geopolymer binder was synthesized using an alkaline activator derived from brown coal gangue and blast furnace slag, along with silica fume as an industrial waste material. Also, the properties of these geopolymer binders are examined using them as a briquette binder. At temperatures above 700°C, roasted brown coal gangue is more active than the initial state. The optimum dosage of alkaline activator is 10M NaOH, silica fume/NaOH ratio of 3, specific gravity of 1.42, and the addition of binder of 6%. The main polymerization products of the alkali activated brown coal gangue geopolymer samples are N-A-S-H gel and amorphous aluminosilicate gel, while the main polymerization products of the alkali activated brown coal gangue -blast furnace slag geopolymer samples are N-A-S-H gel, C-(A)-S-H gel and amorphous aluminosilicate gel. Blast furnace slag is added during the preparation of briquette binder by brown coal gangue geopolymer, which increase the mechanical strength of the geopolymer binder and the optimum dosage is 30%. This study demonstrates a high-value and sustainable pathway for co-utilizing multiple industrial by-products.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-120

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Keulen, Q. Yu, S. Zhang, Effect of admixture on the pore structure refinement and enhanced performance of alkali-activated fly ash-slag concrete, Constr. Build. Mater. 162 (2018) 27-36.

DOI: 10.1016/j.conbuildmat.2017.11.136

Google Scholar

[2] I. Ismail, S. Bemal, J. Provis, Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash, Cem. Concr. Compos. 45 (2014) 125-135.

DOI: 10.1016/j.cemconcomp.2013.09.006

Google Scholar

[3] M. Abdulkareem, J. Havukainen, J. Nuortila-Jokinen, M. Horttanainen, Environmental and economic perspective of waste-derived activators on alkali-activated mortars, J. Clean Prod. 280 (2021) 124651.

DOI: 10.1016/j.jclepro.2020.124651

Google Scholar

[4] B.C. Mendes, L.G. Pedroti, C.M.F. Vieira, M. Marvila, A.R.G. Azevedo, J.M. Franco de Carvalho, J.C.L. Ribeiro, Application of eco-friendly alternative activators in alkali-activated materials: a review, J. Build. Eng. 35 (2021) 102010.

DOI: 10.1016/j.jobe.2020.102010

Google Scholar

[5] Y.H.M. Amran, R. Alyousef, H. Alabduljabbar, M. El-Zeadani, Clean production and properties of geopolymer concrete; A review, J. Clean Prod. 251 (2020) 119679.

DOI: 10.1016/j.jclepro.2019.119679

Google Scholar

[6] J. Mishra, B. Nanda, S.K. Patro, S.K. Das, S.M. Mustakim, Strength and microstructural characterization of ferrochrome ash and ground granulated blast furnace slag based geopolymer concrete. J. Sust. Met. 32(2022) 258-269.

DOI: 10.1007/s40831-021-00469-6

Google Scholar

[7] S.K. Nath, S. Kumar, Role of alkali concentration on reaction kinetics of fly ash geopolymerization, J. Non-Cryst. Solids. 505 (2019) 241–251.

DOI: 10.1016/j.jnoncrysol.2018.11.007

Google Scholar

[8] T. Tho-In, V. Sata, K. Boonserm, P. Chindaprasirt, Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash, J. Clean Prod. 172 (2018) 2892–2898.

DOI: 10.1016/j.jclepro.2017.11.125

Google Scholar

[9] N. Bouzón, J. Payá, M.V. Borrachero, L. Soriano, M.M. Tashima, J. Monzó, Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders, Mater. Lett. 115 (2014) 72–74.

DOI: 10.1016/j.matlet.2013.10.001

Google Scholar

[10] J.C.B. Moraes, A. Font, L. Soriano, J.L. Akasaki, M.M. Tashima, J. Monzó, M.V. Borrachero, J. Payá, New use of sugar cane straw ash in alkali-activated materials: a silica source for the preparation of the alkaline activator, Constr.Build. Mater. 171 (2018) 611–621.

DOI: 10.1016/j.conbuildmat.2018.03.230

Google Scholar

[11] M.F. Alnahhal, T. Kim, A. Hajimohammadi, Waste-derived activators for alkali-activated materials: a review, Cem. Concr. Compos. 118 (2021) 103980.

DOI: 10.1016/j.cemconcomp.2021.103980

Google Scholar

[12] J.M. Mejía, R. Mejía de Gutiérrez, F. Puertas, Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems, Mater. Constr. 63 (2013) 361–375.

DOI: 10.3989/mc.2013.04712

Google Scholar

[13] S.K. Shill, S. Al-Deen, M. Ashraf, W. Hutchison, Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously, Constr. Build. Mater. 239 (2020) 117886.

DOI: 10.1016/j.conbuildmat.2019.117886

Google Scholar

[14] A.I. Moreno, R. Font, J.A. Conesa, Physical and chemical evaluation of furniture waste briquettes, Waste Manag. 49 (2016) 245–252.

DOI: 10.1016/j.wasman.2016.01.048

Google Scholar

[15] K. Ugwu, K. Agbo, Evaluation of binders in the production of briquettes from empty fruit bunches of Elais Guinensis, Int. J. Renew. Sust. Energy. 2 (2013) 176–179.

DOI: 10.11648/j.ijrse.20130204.17

Google Scholar

[16] A. Almutairi, B.A. Tayeh, Potential applications of geopolymer concrete in construction: A review, Case Stud. Construct. Mater. 15 (2021) e00733.

DOI: 10.1016/j.cscm.2021.e00733

Google Scholar

[17] R. Pouhet, Alkali–silica reaction in metakaolin-based geopolymer mortar, Mater. Struct. 48 (2015) 571–583.

DOI: 10.1617/s11527-014-0445-x

Google Scholar

[18] J.T. Oladeji, C.C. Enweremadu, The effect of some processing parameters on physical and densification characteristics of corncob briquettes, Int. J. Energy Eng. 2 (2012) 22–27.

DOI: 10.5923/j.ijee.20120201.04

Google Scholar

[19] K. Drobíková, D. Plachá, O. Motyka, R. Gabor, Recycling of blast furnace sludge by briquetting with starch binder: waste gas from thermal treatment utilizable as a fuel. Waste Manage. 48 (2016) 471–477.

DOI: 10.1016/j.wasman.2015.11.047

Google Scholar