[1]
H.Spliethoff. Power generation from solid fuels, Springer: Berlin/ Heidelberg, Germany (2010).
Google Scholar
[2]
S. Sarkar. Fuel and combustion; University Press: New Delhi, India (2009).
Google Scholar
[3]
H. Yang, Z. Xu, M. Fan, R. Gupta, R. Slimane, A.E. Bland, I. Wright. Progress in carbon dioxide separation and capture: A review. Journal of Environmental Science. 20 (2008)14 – 27.
DOI: 10.1016/s1001-0742(08)60002-9
Google Scholar
[4]
L. Nord, O. Bolland. Carbon dioxide emission management in power generation. Wiley-Verlag GmbH & Co: Weinheim, Germany. (2020).
Google Scholar
[5]
P. Madejski. Thermal power plants, new trends and recent developments; Intech Open Limited, London, UK (2018).
Google Scholar
[6]
P. Madejski, T. Janda, N. Modlinski, D.A Nabaglo. Combustion process optimization and numerical analysis for the low emission operation of pulverized coal-fired boiler. Intech Open Limited, London, UK (2016).
DOI: 10.5772/64442
Google Scholar
[7]
ETP. Special report on carbon capture utilization and storage CCUS in clean energy transition, IEA, Paris, France (2020). https://iea.blob.core.windows.net/assets/7f8aed40-89af-4348-be19c8a67df0b9ea/Energy-Technology-Perspective-2020-PDF.
DOI: 10.1787/208b66f4-en
Google Scholar
[8]
C. Stewart, M.A. Hessami, H.A. Mir-Akbar. A study of methods of carbon dioxide capture and sequestration, the sustainability of a photosynthetic bioreactor approach, Energy Conversion Management, 46 (2005) 403 – 420.
DOI: 10.1016/j.enconman.2004.03.009
Google Scholar
[9]
H. Shijaz, Y. Attada. V.S. Patnaikuni, R. Vooradi, S.B. Anne. Analysis of integrated gasification combined cycle power plant incorporating chemical looping combustion for environment. Friendly utilization of Indian coal, Energy Conversion Management.151 (2017) 414-425.
DOI: 10.1016/j.enconman.2017.08.075
Google Scholar
[10]
S. Mukherjee, P. Kumar, A. Yang, P. Fennell. Energy and exergy analysis of chemical looping combustion technology and comparison with pre-combustion and oxy-fuel combustion technologies for CO2 capture, Journal of Environment and Chemical Engineering. 3,1 (2015) 2104 – 2114.
DOI: 10.1016/j.jece.2015.07.018
Google Scholar
[11]
Y. Wanga, L. Zhaoa, A. Ottoa, M. Robiniusa, D.A. Stoltena. A review of post-combustion CO2 capture technologies from coal-fired power plants, Energy Procedia. 114 (2017)650 – 665.
DOI: 10.1016/j.egypro.2017.03.1209
Google Scholar
[12]
Z. Yong, V. Mata, R. Aliro. Adsorption of carbon dioxide at high temperature. A review. Separation and Purification Technologies. 26 (2002) 195 – 203.
DOI: 10.1016/s1383-5866(01)00165-4
Google Scholar
[13]
B.B. Saha, S. Koyama, I.I. El-sharkawy, K. Habib, K. Srinivasan, P. Dutta. Evaluation of adsorption parameters and heat of adsorption through desorption measurements. Journal of Chemical Engineering Data. 52 (2007) 2419 – 2424.
DOI: 10.1021/je700369j
Google Scholar
[14]
M. Yates, J. Blanco, P. Avila, M. Martin. Honeycomb monoliths of activated carbons for effluent gas purification. Microporous Mesoporous Materials. 37 (2000) 201 – 208.
DOI: 10.1016/s1387-1811(99)00266-8
Google Scholar
[15]
O.E. Ojong, P.D. Benibo, F.I. Abam, S.S. Silas. Enhancing CO2 Adsorption from Flue Gas Mixture at Elevated Temperature using Composite of Nanoparticles. Advances in Science and Technology, Trans Tech Publication 160 (2025) 279-289.
DOI: 10.4028/p-3cwdqg
Google Scholar
[16]
W. Dadet, O.E. Ojong, C.O. Wosu. Absorption and Simulation of Carbon (IV) Oxide Recovery Plant with Monoethanolamine Solvent using Aspen HYSYS. Caritas Journal of Chemical Engineering and Industrial Biotechnology. 2,1(2025) 2025.
Google Scholar
[17]
W. Dadet, O.E. Ojong, K.K. Dagde. The Design and Energy Simulation of CO2 Capture Process (CCP) for a Liquefied Natural Gas (LNG) Plant. Advances in Science and Technology. 142 (2024) 181–192
DOI: 10.4028/p-fd9c5r
Google Scholar
[18]
J. Zhou, S. Yang, J. Yu, Z. Shu. Novel hollow microsphere of hierarchical Zn-Al layered double hydroxides and their enhanced adsorption capacity for phosphate in H2O. Journal of Hazard Materials. 19, 2 (2011)114 – 121.
DOI: 10.1016/j.jhazmat.2011.06.013
Google Scholar
[19]
T.H. Ho, T. Howes, B.R. Bhandari. Encapsulation of gases in powder solid matrices and their applications. Powder Technology. 59 (2017)87–108.
DOI: 10.1016/j.powtec.2014.03.054
Google Scholar
[20]
T. Yaun, W. Xia, J. Yin, X. Zhou, W. Yang. Kinetic and thermodynamic studies on the phosphate's removal by dolomite mineral. Journal of Chemistry, 1, 2 (2015) 1 – 8.
Google Scholar
[21]
N.Y. Mezenner, A. Bensmaili. Kinetics and thermodynamic study of phosphate absorption on iron hydroxide-egg shell waste. Chemical Engineering Journal. 1, 2 (2009)147: 87-98.
DOI: 10.1016/j.cej.2008.06.024
Google Scholar
[22]
X. Qui. Critical review in adsorption kinetic models. Journal of Zhejiang University. 10, 1(2009) 716 – 724.
Google Scholar
[23]
S. Yakout, E. Elsherif. Batch kinetic isotherm and thermodynamic studies of absorption of strontium from aqueous solutions onto low-cost rice straw-based carbons, Carbon Science and Technology. 1 (2010)144 – 153.
Google Scholar
[24]
W.J. Weber, J.C. Morris. Kinetics of adsorption on carbon from solutions. Journal of the Sanitary Engineering Division. 89 (1963) 31 – 39.
Google Scholar
[25]
K. Pasavant, A. Rutter, R.K. Rowe, J.S. Poland. Biosorption of hydrocarbon contaminated soils in the Canadian Arctic by land farming. Colf Register of Science and Technology. 53(2006)102 -114.
DOI: 10.1016/j.coldregions.2007.07.006
Google Scholar
[26]
A.A. Ujile. Evaluating groundwater contamination process and developing framework for qualitative management in part of Nigeria. International Journal of Innovative Research in Science, Engineering and Technology. 2 ,8 (2013) 3890 – 3900.
Google Scholar
[27]
A. Balouch M. Kolachi, F.N. Talpur, H. Khan, M.T. Bhanger. Sorption kinetics, isotherm and thermodynamic modelling of defluoridation of ground water using natural absorbents. American Journal of Analytical Chemistry. 4 (2013) 221 – 228.
DOI: 10.4236/ajac.2013.45028
Google Scholar
[28]
A. Dada, A. Olalekan, O. Dada. Langmuir, Freundlich, Tempkin and Dubinin-Radush Kevich isotherm s studies of equilibrium sorption of Z onto phosphoric acid modified rice husk. Journal of Applied Chemistry 3 (2012)38 – 45.
DOI: 10.9790/5736-0313845
Google Scholar
[29]
N. Boujelben, F. Bouhamed, Z. Eloyear, J. Bouzid, M. Feki. Removal of phosphates ions from aqueous solutions using MO2- Coated sand and brick. Desalination Water Treatment, 52 (2013) 2282 – 2292.
DOI: 10.1080/19443994.2013.822324
Google Scholar
[30]
K.Y. Foo, B. Hameed. Insights into the modelling of adsorption isotherm systems. Chemical Engineering Journal. 120,156 (2010) 2 – 10.
Google Scholar
[31]
M. Tempkin, N. Pyzher. Heavy metals removal and isotherms study. Acta Physiochem., URSS 12,1 (1940) 217 – 222.
Google Scholar
[32]
O.E. Ojong, C.O. Wosu, A. Emenike, P. Ubi. Design and simulation of 30 000 tons per year of cumene plant from natural gas field. Pure and Applied Chemistry (2024a)
DOI: 10.1515/pac-2023-1135
Google Scholar
[33]
O.E. Ojong, V.I. Etim, G.E-E. Aquah, R.I. Uzono. Design and Simulation of the Major Units of Acetone Plant from Isopropyl Alcohol (IPA) Route. Advances in Science and Technology.142 (2024b) 171–180.
DOI: 10.4028/p-nmaxr7
Google Scholar
[34]
O.E. Ojong. Design of Geothermal groundwater heating and cooling plant: A trial study in Eleme Fertilizer Company in Niger Delta Region. Gamification and Augmented Reality, 3,106 (2025) 1-10.
DOI: 10.56294/gr2025106
Google Scholar