On the Oriented Growth and Optical Property of ZnO Thin Films Deposited on NaCl (001) Substrate by Ion Beam Sputtering

Article Preview

Abstract:

Temperature dependent oriented growth of ZnO thin film deposited on NaCl (001) substrates using ion beam sputtering was studied by transmission electron microscopy (TEM). Thin films showing a texture due to parallel epitaxy with NaCl (001) as deposited at 100 oC, whereas thin films deposited at 400 oC can form a texture. The microstructure and the epitaxial relationship with the NaCl (001) plane were studied by a high-resolution TEM. The possible causes for the orientation changed with temperature are discussed. The optical transparency of the nanofilms grown from room temperature to 400 oC was measured.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 121-122)

Pages:

52-57

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.B.M.A. Ashrafi, Y. Segawa, K. Shin, T. Yao, Phys. Rev. B , Vol. 72 (2005), p.155302.

Google Scholar

[2] Y. Jin, S. Yang, Y. Wang, J. Chen, H. Zhang, C. Huang, C. Cao, R.P.H. Chang, Solid State Commun., Vol. 119 (2001), p.409.

Google Scholar

[3] M. Huth, C.P. Flynn, Appl. Phys. Lett., Vol. 71 (1997), p.27.

Google Scholar

[4] G. Coli, K.K. Bajaj, Appl. Phys. Lett., Vol. 78 (2001), p.2861.

Google Scholar

[5] H.D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma, J. Appl. Phys., Vol. 91 (2002), p. (1993).

Google Scholar

[6] Y. -C. Chao, C. -W. Lin, D. -J. Ke, Y. -H. Wu, H. -G. Chen, L. Chang, Y. -T. Ho, M. -H. Liang, J. Crystal Growth, Vol. 298 (2007), p.461.

Google Scholar

[7] Y. -Z. Liu, M.J. Ying, X.L. Du, Z.Q. Zeng, Z.X. Mei, J.F. Jia, Q.K. Xue, Z. Zhang, Phys. Lett. A, Vol. 339 (2005), p.497.

Google Scholar

[8] T.W. Kim, Y.S. Yoon, J. Crystal Growth, Vol. 212 (2000), p.411.

Google Scholar

[9] K. Matsubara, P. Fons, A. Yamada, M. Watanabe, S. Niki, Thin Solid Films, Vol. 347 (1999), p.238.

DOI: 10.1016/s0040-6090(99)00037-1

Google Scholar

[10] P.A. Langjahr, T. Wagner, F.F. Lange, M. Rühle, J. Crystal Growth, Vol. 256 (2003), p, 162.

Google Scholar

[11] M. Ay, A. Nefedov, S. Gil Girol, Ch. Wöll, H. Zabel, Thin Solid Films, Vol. 510 (2006), p.346.

DOI: 10.1016/j.tsf.2005.12.271

Google Scholar

[12] C. Liu, S.H. Chang, T.W. Noh, M. Abouzaid, P. Ruterana, H.H. Lee, D. -W. Kim, J. -S. Chung, Appl. Phys. Lett. , Vol. 90 (2007), p.11906.

Google Scholar

[13] S. Zhou, J. Zhou, T. Huang, S. Li, J. Zou, J. Wang, X. Zhang, X. Li, R. Zhang, J. Crystal Growth, Vol. 303 (2007), p.510.

Google Scholar

[14] L.C. Nistor, C. Ghica, D. Matei, G. Dinescu, M. Dinescu, G. Van Tendeloo, J. Crystal Growth, Vol. 277 (2005), p.26.

DOI: 10.1016/j.jcrysgro.2004.12.162

Google Scholar

[15] J.W. Lee, S.K. Han, S. -K. Hong, J.Y. Lee, T. Yao, J. Crystal Growth, Vol. 310 (2008), p.4102.

Google Scholar

[16] M.M.C. Chou, L. Chang, H. -Y. Chung, T. -S. Huang, J. -J. Wu, C. -W. Chen, J. Crystal Growth, Vol. 308 (2007), p.412.

Google Scholar

[17] H. Matsui, H. Tabata, Appl. Phys. Lett. , Vol. 87 (2005), p.143109.

Google Scholar

[18] F. Quaranta, A. Valentini, F.R. Rizzi, G. Casamassima, J. Appl. Phys., Vol. 74 (1993), p.244.

Google Scholar

[19] S.J. Henley, M.N.R. Ashfold, D. Cherns, Thin Solid Films, Vol. 422 (2002), p.69.

Google Scholar

[20] T. Yanagitani, M. Matsukawa, Y. Watanabe, T. Otani, J. Cryst. Growth, Vol. 276 (2005), p.424.

Google Scholar

[21] L.C. Nistor, C. Ghica, D. Matei, G. Dinescu, M. Dinescu, G. Van Tendeloo, J. Cryst. Growth, Vol. 277 (2005), p.26.

DOI: 10.1016/j.jcrysgro.2004.12.162

Google Scholar

[22] B. Meyer, D. Marx, Phys. Rev. B, Vol. 67 (2003), p.035403.

Google Scholar

[23] J. Zúñiga-Pérez, V. Muñoz-Sanjosé, E. Palacios-Lidón, J. Colchero, Phys. Rev. Lett., Vol. 95 (2005), p.226105.

Google Scholar

[24] G.D. Yuan, W.J. Zhang, J.S. Jle, X. Fan, J.A. Zaplen, Y.H. Leung, L.B. Luo, P.F. Wang, C.S. Lee, S.T. Lee, Nano Lett., Vol. 8 (2008), p.2591.

Google Scholar

[25] J.Y. Lao, J.G. Wen, Z.F. Ren, Nano Lett., Vol. 2 (2002), p.1287.

Google Scholar

[26] G. Zhang, A. Nakamura, T. Aoki, J. Temmyo, Phys. Stat. Sol. C , Vol. 3 (2006), p.722.

Google Scholar

[27] X. Zhou, Z. -X. Xie, Z. -Y. Jiang, Q. Kuang, S. -H. Zhang, T. Xu, R. -B. Huang, L. -S. Zheng, Chem. Commun. (2005), p.5572.

Google Scholar

[28] A. Béré, A. Serra, Phys. Rev. B, Vol. 68 (2003), p.033305.

Google Scholar

[29] B.H. Huang, P. Shen, S. -Y. Chen, J. Europ. Ceram. Soc., Vol. 28 (2008), p.2545.

Google Scholar

[30] K. Shintani, Phys. Rev. B, Vol. 47 (1993), p.7032.

Google Scholar

[31] R.L. Penn, J.F. Banfield, Science, Vol. 281 (1998), p.969.

Google Scholar