Characterization and Photocatalytic Activity of La1.6Ln0.4Zr2O7 (Ln= La, Nd, Dy, Er) Nanocrystals by Stearic Acid Method

Article Preview

Abstract:

La1.6Ln0.4Zr2O7 (Ln= La, Nd, Dy, Er) nanocrystals were prepared by stearic acid combustion method. The samples were characterized by powder X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) nitrogen adsorption, transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The photocatalytic activity of La1.6Ln0.4Zr2O7 was evaluated by the photocatalytic degradation of methyl orange. The order of the photocatalytic activity was as following: La1.6Er0.4Zr2O7>La1.6Dy0.4Zr2O7> La1.6Nd0.4Zr2O7> La2Zr2O7. La1.6Dy0.4Zr2O7 showed that the best photocatalytic activity and the reason may be related to the big magnetic moment of Er3+. It may be considered largely to be caused by the partly occupied Ln4f levels. Since the solid samples have the same structure, the reason that La1.6Er0.4Zr2O7 shows the highest reactivity may be related to lowest Ln4f level of Er3+.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 123-125)

Pages:

631-634

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Uno, A. Kosuga, M. Okui, et al. J. Alloys Comp. Vol. 420 (2006), p.291.

Google Scholar

[2] S. Lutique, R.J. M. Konings, V.V. Rondinella, et al. J. Alloys Comp. Vol. 352 (2003), p.1.

Google Scholar

[3] H. Dai, X.H. Zhong, J.Y. Li, et al. Mater. Sci. Eng. A. Vol. 433 (2006), p.1.

Google Scholar

[4] R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stover, J. Am. Ceram. Soc. Vol. 83 (2000), p. (2023).

Google Scholar

[5] R. A. McCauley and F. A. Hummel. J. Lumin. Vol. 6 (1973), p.105.

Google Scholar

[6] H. Lehmann, D. Pietzer, G. Pracht, R. Vassen, D. Stover. J. Am. Cera. Soc. Vol. 86 (2003), p.1338.

Google Scholar

[7] A. Y. Zhang, M. K. Lü, G. J. Zhou, et al. J. Phys. Chem. Solids Vol. 67 (2006), p.2430.

Google Scholar

[8] G. Blasse, B. C. Grabmaier. Lumin. Mater., Springer, Berlin, (1994).

Google Scholar

[9] N. A. Dhas and K. C. Patil. J. Mater. Chem., Vol. 3 (1993), p.1289.

Google Scholar

[10] J. A. Dean, Lange's Handbook of Chemistry, 15th ed., McGraw-Hill, (1999).

Google Scholar

[11] Y. Tao, G. W. Zhao, W. P. Zhang, et al. Mater. Res. Bull. Vol. 32 (1997), p.501.

Google Scholar

[12] K. Nagaveni, G. Sivalingam, M.S. Hegde, et al. Environ. Sci. Technol. Vol. 38 (2004), p.1600.

Google Scholar

[13] D. Chen and R. Xu. Mater. Res. Bull. Vol. 33 (1998), p.409.

Google Scholar

[14] Z. H. Li, H. Xue, X. X. Wang, X. Z. Fu. J. Mol. Catal. A-Chem. Vol. 260 (2006), p.56.

Google Scholar

[15] M. Machida, S. Murakami, T. Kijima, S. Matsushima, M. Arai, J. Phys. Chem. B Vol. 105 (2001), p.3187.

Google Scholar