Effect of Thicknesses on the Microstructure and Magnetic Properties of CoPt Thin Films

Article Preview

Abstract:

The microstructures and magnetic properties of CoPt thin films with thicknesses between 1 and 20 nm deposited on amorphous glass substrate and post-annealing at 600°C for 30 min were investigated. The morphology of CoPt thin film would change from a discontinuous nano-size CoPt islands into a continuous film gradually as the film thickness was increased from 1 to 20 nm. The formation mechanism of the CoPt islands may be due to the surface energy difference between the glass substrate and CoPt alloy. Each CoPt island could be a single domain particle. This discontinuous nano-island CoPt recording film may increase the recording density and enhance the signal to noise ratio while comparing with the continuous film. The as-deposited 5 nm CoPt film revealed the separated islands morphology after annealing at 600°C for 30 min. This nano-size CoPt thin film may be a candidate for ultra-high density magnetic recording media due to its discontinuous islanded nanostructure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 123-125)

Pages:

655-658

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. A. MaCurrie and P. Gaunt: Philos. Mag. Vol. 13 (1966), p.567.

Google Scholar

[2] O. Kitakami, Y. Shimada, K. Oikawa, H. Daimon and K. Fukamichi: Appl. Phys. Lett. Vol. 78 (2001), p.1104.

Google Scholar

[3] N. I. Vlasova, G. S. Kandaurova and N. N. Shchegoleva: J. Magn. Magn. Mater. Vol. 222 (2000), p.138.

Google Scholar

[4] E. Manios, V. Karanasos, D. Niarchos and I. Panagiotopoulos: J. Magn. Magn. Mater. Vol. 272-276 (2004), p.2169.

Google Scholar

[5] X. H. Xu, Z. G. Yang and H. S. Wu: J. Magn. Magn. Mater. Vol. 295 (2005), p.106.

Google Scholar

[6] H. Wang, S. X. Xue, F. J. Yang, H. B. Wang, X. Cao, J. A. Wang, Y. Gao, Z. B. Huang, C. P. Yang, W. Y. Cheung, S. P. Wong, Q. Li and Z. Li: Thin Solid Films Vol. 505 (2006), p.77.

DOI: 10.1016/j.tsf.2005.10.007

Google Scholar

[7] J. H. Judy: J. Magn. Magn. Mater. Vol. 235 (2001), p.235.

Google Scholar

[8] N. Honda, S. Takahashi and K. Ouchi: J. Magn. Magn. Mater. Vol. 320 (2008), p.2195.

Google Scholar

[9] H. J. Richter, A. Y. Dobin, O. Heinonen, K. Z. Gao, R. J. M. van de Veerdonk, R. T. Lynch, J. Xue, D. Weller, P. Asselin, M. F. Erden and R. M. Brockie: IEEE Trans. Magn. Vol. 42 (2006), p.2255.

DOI: 10.1109/tmag.2006.878392

Google Scholar

[10] B. D. Cullity and S. R. Stock: Elements of X-ray Diffraction, third edition, Prentice Hall (2001), p.170.

Google Scholar

[11] H. Zeng, M. L. Yan, N. Powers and D. J. Sellmyer: Appl. Phys. Lett. Vol. 80/13 (2002), p.2350.

Google Scholar

[12] Y. C. Wu, L. W. Wang and C. H. Laia: Appl. Phys. Lett. Vol. 91 (2007), p.072502.

Google Scholar

[13] L Castaldi1, K Giannakopoulos, A Travlos, D Niarchos, S Boukari and E Beaurepaire: Nanotechnology Vol. 19 (2008), p.085701.

DOI: 10.1088/0957-4484/19/8/085701

Google Scholar

[14] Y. H. Fang, P. C. Kuo, P. L. Lin, S. C. Chen, C. T. Kuo and G. P. Lin: J. Magn. Magn. Mater. Vol. 320 (2008), p.3032.

Google Scholar

[15] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, Mike F. Toney, M. Scgwickert, J. U. Thiele and M. F. Doerner: IEEE Trans. Magn. Vol. 36 (2000), p.10.

DOI: 10.1109/20.824418

Google Scholar

[16] T. Shima, K. Takanashi, Y. K. Takehashi and K. Hono, Appl. Phys. Lett. Vol. 81 (2002), p.1050.

Google Scholar

[17] D. Y. Oh and J. K. Park: J. Appl. Phys. Vol. 97 (2005), p. 10N105.

Google Scholar