Temperature Effects on Synthesis of Multi-Walled Carbon Nanotubes by Ethanol Catalyst Chemical Vapor Deposition

Article Preview

Abstract:

In this study, we report the synthesis of carbon nanotubes by ethanol catalytic chemical vapor deposition, which employs ferrocene as the catalyst precursors and ethanol as carbon source. We obtained massive deposits. The deposits were characterized by scanning electron microscopy, transmission electron microscopy, and visual laser Raman spectroscopy. We discussed the effects of synthesis temperature on the synthesis of carbon nanotubes by floating catalytic chemical vapor deposition. Our results indicated that the synthesis temperature could affect not only on the graphitization degree, but also on the aligned growth of carbon nanotubes and the diameter of carbon nanotubes.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 123-125)

Pages:

799-802

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[2] S.J. Tans, A.R.M. Verschueren and C. Dekker: Nature Vol. 393 (1998), p.49.

Google Scholar

[3] N.M. Rodriquez, M.S. Kim and R.T.K. Baker: J. Phys. Chem. Vol. 98 (1994), p.13108.

Google Scholar

[4] C. Park, P.E. Anderson, A. Chambers, C.D. Tan, R. Hidalgo and N.M. Rodriguez: J. Phys. Chem. B Vol. 103 (1999), p.10572.

Google Scholar

[5] B. Gao, A. Kleinhammes, X.P. Tang, C. Bower, L. Fleming, Y. Wu and O. Zhou: Chem. Phys. Lett. Vol. 307 (1999), p.153.

Google Scholar

[6] C. Bower, R. Rosen, L. Jin, J. Han and O. Zhou: Appl. Phys. Lett. Vol. 74 (1999), p.3317.

Google Scholar

[7] T.W. Ebbessen and P.M. Ajayan: Nature Vol. 358 (1992), p.220.

Google Scholar

[8] L. Yuan, K. Saito, and C. Pan, F.A. Williams and A.S. Gordon: Chem. Phys. Lett. Vol. 340 (2001), p.237.

Google Scholar

[9] M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto and D.R.M. Walton: Nature Vol. 388 (1997), p.52.

DOI: 10.1038/40369

Google Scholar

[10] S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell and H.J. Dai: Science Vol. 283 (1999), p.512.

Google Scholar

[11] W. Z . Li, S.S. Xie, L.X. Qlan, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao and G. Wang: Science Vol. 274 (1996), p.1701.

Google Scholar

[12] F. Tuinstra and J.L. Koenig: J. Chem. Phys. Vol. 53 (1970), p.1126.

Google Scholar

[13] Z.P. Zhou, L.J. Ci, L. Song, X.Q. Yan, D.F. Liu, H.J. Yuan, Y. Gao, J.X. Wang, L.F. Liu, W.Y. Zhou, G. Wang and S.S. Xie: Carbon Vol. 41 (2003), p.2607.

DOI: 10.1016/s0008-6223(03)00336-1

Google Scholar