ZnO Nanorod Arrays and Nanowires by Hydrothermal Growth

Article Preview

Abstract:

We are reporting here on an inexpensive and facile fabrication method for ZnO nanorod arrays by hydrothermal growth at low temperature (90°C). In our experiment, ZnO nanostructures were grown on glass substrate using an equimolar (0.1M) aqueous solution of Zn(NO3)2•6H2O (zinc nitrate hexahydrate) and C6H12N4 (HMTA) as precursors solution, and using ammonia solution to controlling the pH levels. It enable easily obtained arrayed ZnO nanorods on substrate, and nanowires which grown on nanorod arrays were identified after about 1 month in the air. The growth process of nanorods and the formation mechanism of nanowires were investigated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 123-125)

Pages:

811-814

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Huang, S. Mao, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang: Science Vol. 292 (2001), p.1897.

Google Scholar

[2] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa and K. Hiruma: Appl. Phys. Lett. Vol. 61 (1992), p. (2051).

Google Scholar

[3] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. -S. Park, W. B. Choi, N. S. Lee and J. M. Kim: Adv. Mater. Vol. 12 (2000), p.746.

DOI: 10.1002/(sici)1521-4095(200005)12:10<746::aid-adma746>3.0.co;2-n

Google Scholar

[4] X. F. Duan and C. M. Lieber: Adv. Mater. Vol. 279 (2000), p.208.

Google Scholar

[5] L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt: J. Phys. Chem. B Vol. 105 (2001), p.3350.

Google Scholar

[6] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. -S. Park, W. B. Choi, N. S. Lee and J. M. Kim: Adv. Mater. Vol. 12 (2000), p.746.

DOI: 10.1002/(sici)1521-4095(200005)12:10<746::aid-adma746>3.0.co;2-n

Google Scholar

[7] Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp: Appl. Phys. Lett. Vol. 76 (2000), p. (2011).

Google Scholar

[8] X. D. Gao, X. M. Li and W. D. Yu: J. Phys. Chem. B Vol. 98 (2005), p.1155.

Google Scholar

[9] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel: Science Vol. 287 (2000), p.1471.

Google Scholar

[10] D. S. Boyle, K. Govender and P. O'Brien: Chem. Commun. (2002), p.80.

Google Scholar

[11] J. M. Du, Z. M. Liu, Y. Huang, J. Y. Gao, B. H. Han, W. J. Li and G. Y. Yang: J. Cryst. Growth., Vol. 280 (2005), p.126.

Google Scholar

[12] L. Vayssieres: Adv. Mater. Vol. 15 (2003), p.464.

Google Scholar

[13] K. Yu, Z.G. Jin, X.X. Liu, J. Zhao and J.Y. Feng: Applied Surface Science, Vol. 253(2007), p.4072.

Google Scholar

[14] D. S. Boyle, K. Govender and P. O'Brien: Chem. Commun. (2002), p.80.

Google Scholar

[15] F. J. Jin, Z. Li and F. Li: J. Funct. Mater. Devices Vol. 13 (2007), p.453.

Google Scholar

[16] N. Uekawa, R. Yamashita, Y. J. Wu and K. Kakegawa: Phys. Chem. Chem. Phys. Vol. 6 (2004), p.442.

Google Scholar