Glass Forming Ability and Non-Isothermal Crystallization Kinetics of Zr64Al10.1Cu11.7Ni14.2 Metallic Glass

Article Preview

Abstract:

The glass forming ability, thermal stability and non-isothermal crystallization kinetics of Zr64Al10.1Cu11.7Ni14.2 glass forming alloy were investigated. Its maximum glass forming dimension is up to 5mm and its critical cooling rate is less than 40Ks-1. The apparent activation energies derived from the Kissinger for Eg, Ex, Ep1 and Ep2 are 244.97±12.90, 264.63±10.18, 268.75±40.10 and 222.34±24.12 KJmol-1, respectively. The fragility parameter m is about 20.27, indicating its better thermal stability and glass forming ability.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 139-141)

Pages:

493-497

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Inoue: Acta Mater., Vol. 48 (2000) No. 1, pp.279-306.

Google Scholar

[2] B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang and A.L. Greer: Phys. Rev. Lett., Vol. 94 (2005) No. 20, pp.205502-1.

Google Scholar

[3] J. Schroers and W.L. Johnson: Phys. Rev. Lett., Vol. 93 (2004) No. 25, pp.255506-1.

Google Scholar

[4] W.H. Wang: Prog. Mater. Sci., Vol. 52 (2007) No. 4, pp.540-596.

Google Scholar

[5] W.H. Wang, C. Dong and C.H. Shek: Mater. Sci. Eng. R, Vol. 44 (2004) No. 2-3, pp.45-89.

Google Scholar

[6] A.H. Cai, X. Xiong, Y. Liu, W.K. An and J.Y. Tan: Appl. Phys. Lett., Vol. 92 (2008) No. 11, pp.111909-1.

Google Scholar

[7] A.H. Cai, H. Chen, W.K. An, J.Y. Tan and Y. Zhou: Mater. Sci. Eng. A, Vol. 457 (2007) No. 1-2, pp.6-12.

Google Scholar

[8] A. Inoue, T. Zhang and A. Takeuchi: Appl. Phys. Lett., Vol. 71 (1997) No. 4, pp.464-466.

Google Scholar

[9] A.H. Cai, X. Xiong, Y. Liu, H. Chen, W. K. An, X.S. Li, Y. Zhou and Y. Luo: Eur. Phys. J. B, Vol. 64 (2008) No. 6, pp.147-151.

Google Scholar

[10] B.C. Wei, W.H. Wang, L. Xia, Z. Zhang, D.Q. Zhao and M.X. Pan: Mater. Sci. Eng. A, Vol. 334 (2002) No. 1-2, pp.307-311.

Google Scholar

[11] V.A. Khonik, K. Kitagawa and H. Mori: J. Appl. Phys., Vol. 87 (2000) No. 12, pp.8440-8443.

Google Scholar

[12] A. Inoue, T. Zhang and T. Masumoto: J. Non-Cryst. Solids, Vol. 156-158 (1993) No. 2, pp.473-480.

Google Scholar

[13] X.H. Lin and W.L. Johnson: J. Appl. Phys., Vol. 78 (1995) No. 11, pp.6514-6519.

Google Scholar

[14] R. Böhmer, K.L. Ngai, C.A. Angell and D.J. Plazek: J. Chem. Phys., Vol. 99 (1993) No. 5, pp.4201-4209.

Google Scholar

[15] C.A. Angell: Science, Vol. 267 (1995) No. 5206, p.1924-(1935).

Google Scholar

[16] D.N. Perera: J. Phys: Condens. Mater., Vol. 11 (1999) No. 19, pp.3807-3813.

Google Scholar