Molecularly Imprinted Polymer Microspheres Prepared by Precipitation Polymerization for Atenolol Recognition

Article Preview

Abstract:

Molecularly imprinted polymer microspheres for selective binding and recognition of atenolol were prepared by means of precipitation polymerization method using methacylic acid as functional monomer and trimethylolpropane trimethacrylate as cross-linker in the presence of atenolol as template molecule in acetonitrile solution. Computer simulation was employed to demonstrate the mechanism of the interaction between methacylic acid and atenolol. The scanning electron microscopy exhibited that the polymers were uniform spheres with the diameter of about 0.6µm. The adsorption properties of atenolol for imprinted microspheres were evaluated by equilibrium rebinding experiments. Scatchard plot analysis revealed that there were two classes of binding sites in the imprinted microspheres. The dissociation constant and the apparent maximum binding capacity were 4.56×10-4mol/L and 186.46μmol/g for the high affinity binding sites, 2.40×10-2mol/L and 4.01mmol/g for the low affinity binding sites. Compared to the structrally analogues, the imprinted microspheres exhibited a high selective reconizable capacity towards the template.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 148-149)

Pages:

1192-1198

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Sellergen: Angew. Chem. Int. Ed. Engl. Vol. 39 (2000), p.1031.

Google Scholar

[2] J. T. Huang, S. H. Zheng and J. Q. Zhang: Polymer Vol. 45 (2004), p.4349.

Google Scholar

[3] F. G. Tamayo, M. M. Titirici, A. Martin-Esteban and B. Sellergen: Anal. Chim. Acta Vol. 542 (2005), p.38.

Google Scholar

[4] T. Y. Guo, Y. Q. Xia, G. J. Hao, M. D. Song and B. H. Zhang: Biomaterials Vol. 25 (2004). p.5905.

Google Scholar

[5] H. Q. Shi, W. B. Tsai, M. D. Garrison, S. Ferrari and B. D. Ratner: Nature Vol. 398 (1999), p.593.

Google Scholar

[6] K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata, T. Araki and N. Tanaka: J. Chromatogr. A Vol. 728 (1996), p.139.

Google Scholar

[7] R. Kielczyński and M. Bryiak: Sep. Purif. Tech. Vol. 41 (2005), p.231.

Google Scholar

[8] L. Ye and K. Mosbach: React. Funt. Polym. Vol. 48 (2001), p.149.

Google Scholar

[9] G. Ciardelli, C. Borrelli, D. Silvestri, C. Cristanllini, N. Barbani and P. Giusti: Bionsens. Bioelectron. Vol. 21 (2006), p.2329.

Google Scholar

[10] Y. Egawa, Y. Shimura, Y. Nowatari, D. Aiba and K. Juni: J. Pharm. Int. Vol. 293 (2005), p.165.

Google Scholar

[11] J. Haginaka: J. Chromatogr. B Vol. 866 (2008), p.3.

Google Scholar

[12] S. Wei, A. Molnielli and B. Mizaikoff: Biosens. Bioelectron. Vol. 21 (2006), p. (1943).

Google Scholar

[13] O. Kamp, G. T. Sieswerda and C. A. Visser: Am. J. Cardiol. Vol. 92 (2003), p.334.

Google Scholar

[14] S. A. C. Wren, P. Tchelitcheff: J. Pharm. Biomed. Anal. Vol. 40 (2006), p.571.

Google Scholar

[15] A. B. J. Tabrizi: Food Drug Anal. Vol. 15 (2007), p.242.

Google Scholar

[16] M. A. Gotardo, J. O. Tognolli, H. R. Pezza and L. Pezza: Spectrosc. Acta A Vol. 69 (2008), p.1103.

Google Scholar

[17] E. Piletska, S. Piletsky, K. Karim, E. Terpetschnig and A. T. F. Turner: Anal. Chim. Acta Vol. 504 (2004), p.179.

DOI: 10.1016/s0003-2670(03)00813-4

Google Scholar

[18] J. Zhou and X. W. He: Anal. Chim. Acta Vol. 381 (1999), p.85.

Google Scholar

[19] K. Yang, J. Ma, H. Zhou, B. Li, B. Yu and C. Zhao: Desalination Vol. 245 (2009), p.232.

Google Scholar