Crystal Structure and Electrochemical Properties of AB3.8-Type Earth Mg Ni-Based Hydrogen Storage Alloys

Article Preview

Abstract:

La0.8-xPrxMg0.2Ni3.8 (x=0,0.15,0.3,0.4) alloys were prepared by induction melting followed by annealing treatment at 1173K for 24 h. Alloys structure and electrochemical properties of different Pr elecment have been studied systematically by X-ray diffraction(XRD) with the Rietveld methold , scanning electron microscope (SEM)and electrochemical experiments. Alloys structure analyses show that all of the alloys mainly consisted of complex phases such as (La,Pr,Mg)5Ni19 phase(Ce5Co19-type,SG:R-3m), (La,Pr,Mg)5Ni19 phase (Pr5Co19-type, SG:P63/mmc)and (La,Pr)Ni5 phase(CaCu5-type,SG:P6/mmm), Pr eletment was benefited to the formation of Pr5Co19-type phase, The (La,Pr,Mg)5Ni19 phase not only exists in high temperature area but also exists in low temperature area.The activation characteristic and maximum discharge capacity got worse with increasing Pr content,At the same time, The Pr5Co19–type phase and Ce5Co19–type phase all had better electrochemical cyclic stability than the PuNi3-type phase in earth–Mg–Ni-based Hydrogen Storage Alloys.The cyclic stability of alloy electrodes was a closely related to the stacking structures consisting of one Laves-type slab (AB2) and three CaCu5-type slabs (AB5) along the c-axis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 156-157)

Pages:

108-112

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kadir, T. Sakai, I. Uehara: J. Alloys Compd. Vol. 257 (1997), p.115.

Google Scholar

[2] K. Kadir,N. Kuriyama, T. Sakai, I. Uehara, and L. Eriksson:J. Alloys Compd. Vol. 284 (1999) , p.145.

Google Scholar

[3] T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, and M. Kanda:J. Alloys Compd. Vol. 311 (2000) , p.5.

Google Scholar

[4] Faliang Zhang, Yongchun Luo, Jiangping Chen, Ruxu Yan, Long Kang, and Jianhong Chen :J. Power Sources. Vol. 150(2005), p.247.

Google Scholar

[5] Shigekazu Yasuoka, Yoshifumi Magari, and Tetsuyuki Murata:J. Power Sources. Vol. 156 (2006), p.662.

Google Scholar

[6] Tetsuya Ozaki, Hua-Bin Yang, and Tsutomu Iwaki.:J. Alloys Compd. Vol. 408–412 (2006) , p.294.

Google Scholar

[7] R.V. Denys, B. Riabov, and V.A. Yartys:J. Alloys Compd. Vol. 446–447 (2007) , p.166.

Google Scholar

[8] T. Ozaki, M. Kanemoto, T. Kakeya , Y. Kitano , M. Kuzuhara ,M. Watada , S. Tanase , and T. Sakai :J. Alloys Compd. Vol. 446–447 (2007) ,P. 620.

DOI: 10.1016/j.jallcom.2007.03.059

Google Scholar

[9] F. Li, K. Young, T. Ouchi, and M.A. Fetcenko:J. Alloys Compd. Vol. 471 (2009) , p.371.

Google Scholar

[10] Hiroshi Hayakawa, Etsuo Akiba, and Midori Gotoh: Materials Transactions. Vol. 46 (2005), p.1393.

Google Scholar

[11] T. Yamamoto, H. Inui, M. Yamaguchi, K. Sato, S. Fujitani, I. Yonezu, and K. Nishio: Acta Metallurgica. Vol. 45 (1997), p.5213.

Google Scholar

[12] Young R A: The Rietveld Method (Oxford University Publications,U. K 1993).

Google Scholar

[13] B. Liao, Y. Q. Lei, L. X. Chen, G. L. Lu, H. G. Pan, and Q. D. Wang:J. Power sources. Vol. 129(2004), p.358.

Google Scholar

[14] J.J. Reilly, in: Metal hydrides electrode , edtied by J.O. Besenhard, in Handbook of Battery Materials , in, chapter, 7, Wiley-VCH Publishers, (1999).

Google Scholar