[1]
Fu MW, Yong MS and Tong KK, Muramatsu T: A methodology for evaluation of metal forming system design and performance via CAE simulation. Int J Prod Res, (2006), 44: 1075–1092.
DOI: 10.1080/00207540500337643
Google Scholar
[2]
Peder SH, Niel B, Jens G and Povl B: Fatigue in cold forging dies: tool life analysis. J Mater Process Technol, (1999), 95: 40–48.
Google Scholar
[3]
Pedersen T: Numerical modeling of cyclic plasticity and fatigue damage in cold-forging tools. Int J Mech Sci, (2000), 42: 799–818.
DOI: 10.1016/s0020-7403(99)00019-3
Google Scholar
[4]
MacCormack C and Monaghan J: Failure analysis of cold forging dies using FEA. J Mater Process Technol, (2001), 117: 209–215.
DOI: 10.1016/s0924-0136(01)01139-6
Google Scholar
[5]
Lange K, Hettg A and Knoerr M: Increasing tool life in cold forging through advanced design and tool manufacturing techniques. J Mater Process Technol (1992), 35: 495–513.
DOI: 10.1016/0924-0136(92)90337-r
Google Scholar
[6]
Lee YC and Chen FK: Fatigue life of cold forging dies with various values of hardness. J Mater Process Technol, (2001), 113: 539–543.
DOI: 10.1016/s0924-0136(01)00720-8
Google Scholar
[7]
Joun MS, Lee MC and Park JM: Finite element analysis of prestressed die set in cold forging. Int JMach ToolsManuf, (2002) 42: 1213–1222.
DOI: 10.1016/s0890-6955(02)00079-2
Google Scholar
[8]
H.C. Wang, Q. Long, and H.H. Xi: Transactions of the Chinese Society of Agricultural Machinery, (3) (1997) 105 (in Chinese).
Google Scholar
[9]
B. Nikolai, V. Alexey, L. Andrey, and S. Sergei: American Society of Mechanical Engineers, Manufacturing Engineering Division (MED), 11 (2000) 475.
Google Scholar
[10]
G.H. Farrahi and H. Ghadbeigi: Journal of Materials Processing Technology, 174(1-3) (2006) 318.
Google Scholar
[11]
C.A. Довнарand Z.W. Su: Thermodynamics of Failure and Strengthening for Hot Forging Die (Beijing: National Defence Industry Press, 1988) p.1.
Google Scholar
[12]
X. J . Liu, H.C. Wang, and D.W. Li: STUDY ON DESIGN TECHNIQUES OF A LONG LIFE HOT FORGING DIE WITH MULTI-MATERIALS. Acta Metall . Sin. (Engl . Lett. ) , Vol. 20 No. 6 pp.448-456 Dec. (2007).
DOI: 10.1016/s1006-7191(08)60009-5
Google Scholar
[13]
Rannar LE, Glad A & Gustafson CG: Efficient cooling with tool inserts manufactured by electron beam melting, Rapid Prototyping Journal, Vol. 13/3 (2007), p.128–135.
DOI: 10.1108/13552540710750870
Google Scholar
[14]
Ferreira JC and Mateus A: Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding, J Mater Process Tech, Vol. 142 (2003), pp.508-516.
DOI: 10.1016/s0924-0136(03)00650-2
Google Scholar
[15]
Li CL: A feature-based approach to injection mould cooling system design, Comput Aided Des, Vol. 33(2001), pp.1073-1090.
DOI: 10.1016/s0010-4485(00)00144-5
Google Scholar
[16]
K. M. Au and K. M. Yu: A scaffolding architecture for conformal cooling design in rapid plastic injection moulding, Int J Adv Manuf Technol, Vol. 34 (2007), p.496–515.
DOI: 10.1007/s00170-006-0628-x
Google Scholar
[17]
Dalgarno KW, Stewart TD and Allport JM: Layer manufactured production tooling incorporating conformal heating channels for transfer moulding of elastomer compounds, Plast Rubber Compos, Vol. 30/8 (2001), p.384–388.
DOI: 10.1179/146580101101541778
Google Scholar
[18]
Xu XR, Sachs E, Allen S and Cima M: Designing conformal cooling channels for tooling. Solid Freeform Fabrication Proceedings, (1998), p.131–146.
Google Scholar
[19]
Emanuel Sachs, Edward Wylonis, Samuel Allen, Michael Cima, and Honglin Guo: Production of Injection Molding Tooling With Conformal Cooling Channels Using the Three Dimensional Printing Process, Polym Eng Sci, Vol. 40(2000), p.1232–1247.
DOI: 10.1002/pen.11251
Google Scholar
[20]
Knoerr M, Lange K and Altan T: Fatigue failure of cold forging tooling: causes and possible solutions through fatigue analysis. J Mater Process Technol, 1994, 46: 57–71.
DOI: 10.1016/0924-0136(94)90102-3
Google Scholar