Research on Friction and Wear Properties of Annealed 5052 Al-Mg Alloy

Article Preview

Abstract:

At annealing temperature, Al-Mg alloys have grain boundary and surface magnesium segregation and their strength are also impossibly enhanced by heat treatment. Friction and wear properties of cold-rolled 5052 aluminum alloy annealed at different temperature were studied in this paper. X-ray diffract analysis(XRD) indicates that metallurgical phase has no obvious transformation with different annealing temperature. Auger electron (AE) fines that magnesium segregation and oxide layer thickness of surface are different along the plate thickness direction at different annealing temperatures. Results show that the higher oxide layer of the surface, the smaller wear can be got. Friction and wear testing shows that 5052 aluminum alloy annealed at different temperatures almost have the same coefficient of friction under the same experimental condition , but the coefficient friction of the same sample will increase while temperature rises.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

157-162

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. G . Chen, Z .Y. Xu, X. Q . Lu: Light Alloy Fabrication Technology. Vol. 30 (2002), p.1.

Google Scholar

[2] Z. T. Wang, D. F. Liu: Light Alloy Fabrication Technology. Vol. 30(2002), p.1.

Google Scholar

[3] X. Gao, Y. Han, Y. Y . Ma, Y. H. Chen : LAFT. Vol. 36(2008), p.27.

Google Scholar

[4] C. Z. Hai, J. H. Ma: Light Alloy Fabrication Technology. Vol. 28(2000), p.14.

Google Scholar

[5] R. Narayanasamy, R. Ravindran, K. Manonmani, J. Satheesh: Materials and Design. Vol. 30(2009), p.1804.

Google Scholar

[6] X. M. Zhang, W. X. Wu, S. D. Liu, J. X, J. G . Tang: J. Cent. South Univ. (science and technology). Vol. 37 (2006), p.1.

Google Scholar

[7] J. M. Xiao: Alloy phase and phase transformation (Metallurgical Industry Press, Beijing 1987).

Google Scholar

[8] H.R. Le and M.P.F. Sutcliffe: Metallurgical and Materials Transactions B. Vol. 35B(2004), p.919.

Google Scholar

[9] H.R. Le , M.P.F. Sutcliffe, P.Z. Wang, G.T. Burstein: Acta Materialia. Vol. 52(2004), p.911.

Google Scholar

[10] M.F. Frolish, M. Krzyzanowski, W.M. Rainforth, J.H. Beynon: Journal of Materials Processing Technology . Vol. 177(2006), p.36.

Google Scholar

[11] D.T. L. van Agterveld, G. Palasantzas, J. Th. M, De Hosson: Applied Surface Science. Vol. 152(1999), p.250.

Google Scholar

[12] C. Lea, C. Molinari: Journal of Materials Science. Vol. 19(1984), p.2336.

Google Scholar

[13] Joseph Bloch, David J. Bottomley. etc.: Surface Science. Vol. 322 (1995), pp.168-176.

Google Scholar

[14] G. Palasantzas, D. T. L. van Agterveld, etc.: Applied Surface. Vol. 191(2002), p.266.

Google Scholar

[15] M-N. De Noirfontaine, G. Baldinozzi, M. G. Barthe´s Labrousse, J. Kusinski, etc.: Oxide Met. Vol. 73(2010), p.219.

Google Scholar

[16] L. Wang : Light Alloy Fabrication Technology. Vol. 33 ( 2005), p.46.

Google Scholar