Experimental Investigation on Adsorptive Removal of Phenolic Compounds from Aqueous Solution by Cr-Bentonite

Article Preview

Abstract:

The ability of Cr-bentonite prepared using synthetic wastewater containing chromium was investigated for adsorptive removal of 4-aminophenol and 4-chlorophenol from aqueous solution in a batch system at 25 °C. The physic-chemical parameters including pH value of solution and contact time were studied. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of sorption. The equilibrium sorption data for 4-aminophenol and 4-chlorophenol were well fitted to Langmuir adsorption isotherm and the monolayer sorption capacity was found to be 26.53 and 23.81 mg/g at 25 °C, respectively. The sorption energy calculated from Dubinin-Redushkevich (D-R) isotherm are 8.31 and 8.20 kJ/mol for the uptake of 4-aminophenol and 4-chlorophenol respectively which indicates that both the sorption processes are chemical in nature. The kinetic data were analyzed using pseudo-first order, pseudo-second order kinetic equation and intraparticle diffusion model. The experimental data fit very well the pseudo-second order kinetic model. Intraparticle diffusion affects 4-aminophenol and 4-chlorophenol uptake. Sorption studies carried out using industrial wastewater samples containing phenolic compounds show that there is significant potential for Cr-bentonite as an adsorbent material for phenollic compounds removal from aqueous solutions.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 160-162)

Pages:

163-170

Citation:

Online since:

November 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Dutta, J.K. Basu and R.N. Ghar: Sep. Purif. Technol. Vol. 21 (2001), p.227.

Google Scholar

[2] C.S.A. Sa and R.A.R. Boaventura: Biochem. Eng. J. Vol. 9 (2001), p.211.

Google Scholar

[3] K. Karim and S.K. Gupta: Bioresource Technol. Vol. 80 (2001), p.179.

Google Scholar

[4] H. El-Hamshary, S. El-Sigeny, M.F.A. Taleb and N.A. El-Kelesh: Sep. Purif. Technol. Vol. 57 (2007), p.329.

DOI: 10.1016/j.seppur.2007.04.013

Google Scholar

[5] T.G. Danis, T.A. Albanis, D.E. Petrakis and P.J. Pomonis: Water Res. Vol. 32 (1998), p.295.

Google Scholar

[6] S. Rengaraj, S. -H. Moon, R. Sivabalan, B. Arabindoo and V. Murugesan: J. Hazard. Mater. B Vol. 89 (2002), p.185.

Google Scholar

[7] K. Abburi: J. Hazard. Mater. Vol. 105(2003), p.143.

Google Scholar

[8] S. Al-Asheh, F. Banat and L. Abu-Aitah: Sep. Purif. Technol. Vol. 33 (2003), p.1.

Google Scholar

[9] J. -M. Chern and Yi. -W. Chien: Water Res. Vol. 37 (2003), p.2347.

Google Scholar

[10] I. Abay, A. Denizli, E. Bişkin and B. Salih: Chemosphere Vol. 61 (2005), p.1263.

Google Scholar

[11] N. Kyuya, A. Namba, S.R. Mukaia, H. Tamona, P. Ariyadejwanichb and W. Tanthapanichakoon: Water Res. Vol. 38 (2004), p.1791.

Google Scholar

[12] M. Ahmaruzzaman: Adv. J. Colloid Interface Sci. Vol. 143 (2008), p.48.

Google Scholar

[13] R. E. Grim: Applied Clay Mineralogy (McGraw-Hill Book Company, New York, 1962).

Google Scholar

[14] B.L. Sawliney and S.S. Singh: Clays Clay Miner. Vol. 45 (1997), p.333.

Google Scholar

[15] P. Alba, B. Ilaria and C. Gessa: Clays Clay Miner. Vol. 48 (2000), p.19.

Google Scholar

[16] P. Alba, B. Ilaria and C. Gessa: Clays Clay Miner. Vol. 51 (2003), p.143.

Google Scholar

[17] H. Zheng, D. Liu, Y. Zheng, S. Liang and Z. Liu: J. Hazard. Mater. Vol. 167(2009), p.141.

Google Scholar

[18] H. Zheng, Y. Wang, Y. Zheng, H. Zhang, S. Liang and M. Long: Chem. Eng. J. Vol. 143 (2008), p.117.

Google Scholar

[19] I. Langmuir: J. Am. Chem. Soc. Vol. 40 (1918), p.1361.

Google Scholar

[20] H. Freundlich: Phys. Chem. Soc. Vol. 40 (1906), p.1361.

Google Scholar

[21] M.J. Temkin and V. Pyzhev: Acta Physiochim. URSS Vol. 12 (1940), p.217.

Google Scholar

[22] M.M. Dubinin, E.D. Zaverina and L.V. Radushkevich: Zh. Fiz. Khim. Vol. 21 (1947), p.1351.

Google Scholar

[23] T.K. Naiya, A.K. Bhattacharya and S.K. Das: J. Colloid Interface Sci. Vol. 333 (2009), p.14.

Google Scholar

[24] R.E. Treybal: Mass Transfer Operations (McGraw Hill, New York, 1968).

Google Scholar

[25] B.H. Hameed, D.K. Mahmoud and A.L. Ahmad: J. Hazard. Mater. Vol. 158 (2008), p.65.

Google Scholar

[26] S. Lagergren: Handl. Vol. 24 (1898), p.1.

Google Scholar

[27] S. Azizian: J. Colloid Interface Sci. Vol. 276 (2004), p.47.

Google Scholar

[28] W.J. Weber Jr. and J.C. Morris: J. Sanit. Eng. Div. Proceed. Am. Soc. Civil Eng. Vol. 89 (1963), p.31.

Google Scholar

[29] D. Karadag, Y. Koc, M. Turan and B. Armagan: J. Hazard. Mater. B Vol. 136 (2006), p.604.

Google Scholar

[30] K.V. Kumar, V. Ramamurthi and S. Sivanesan: J. Colloid Interface Sci. Vol. 284 (2005), p.14.

Google Scholar