Optical Nonlinearities of Epitaxial KTa0.65Nb0.35O3 Thin Films Grown by Pulsed Laser Deposition on (100) SrTiO3

Article Preview

Abstract:

Perovskite KTa0.65Nb0.35O3 (KTN) thin films were grown by pulsed laser deposition (PLD) on single crystal SrTiO3 (100) substrates. X-ray diffraction (XRD) analyses illustrate epitaxially grown of KTN thin films along the (100) orientation. The surface morphology of films observed by atomic force microscope (AFM) showed that, the surface of films was smooth and uniform built from regular, ordered and dense grains with the root mean square (RMS) roughness of 5.602 nm. Linear and third-order nonlinear optical properties of the films were investigated by using transmission spectra as well as the Z-scan technique with femtosecond laser pulses, respectively. The open-aperture and closed-aperture Z-scan curves of KTN thin films were obtained in the first measurement. The calculated nonlinear refractive index was , the nonlinear absorption coefficient is = , and the real part and imaginary part of the third order nonlinear susceptibility are and respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 181-182)

Pages:

212-219

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Sasaura, T. Imai, H. Kohno, et al, J. Cryst. Growth 275(2005).

Google Scholar

[2] Zhang, H.Y., He, X.H., Shih, Y.H., Applied Physics Letters, 73(1998).

Google Scholar

[3] Kofi Korsah, Roger Kisner, Hans Christen, et al, Sensors and Actuators A, 119(2005).

Google Scholar

[4] Duanming Zhang, Zhihua Li, Xiaodong Wang, et al. Am. Ceram. Soc. Bull., , 80(2001).

Google Scholar

[5] Nian Wei, Duan-Ming Zhang, et al. J. Am. Ceram. Soc. 90(2007).

Google Scholar

[6] Geusic J E, Kurtz S K et al: Appl. Phys. Lett, , 4(1964), p.141.

Google Scholar

[7] Jiyang Wang, Qingcai Guan, et al, Appl. Phys. Lett, 61(1992).

Google Scholar

[8] L. A. Knauss, K. S. Harshavardhan, H. M. Christen, Appl. Phys. Lett., 73(1998).

Google Scholar

[9] Yongming Hu, Haoshuang Gu, Zhenglong Hu, et al. J. Colloid and Interface Science 310(2007).

Google Scholar

[10] Zgonik, M, Guenter, P, Ferroelectrics, 126(1992).

Google Scholar

[11] A. Rousseau, M. Guilloux-Viry, E. Dogheche: J. Appl. Phys., 102, 093106 (2007).

Google Scholar

[12] R. Swanepoel: J. Phys. E: Sci. Instrum. 16(1983).

Google Scholar

[13] R. Swanepoel: J. Phys. E: Sci. Instrum. 17(1984).

Google Scholar

[14] L. A. Knauss, K. S. Harshavardhan and H. M. Christen: Appl. Phys. Lett., 73(1998).

Google Scholar

[15] J. Tauc, in:J. Tauc(Ed. ) (Plenum, New Yerk 1974).

Google Scholar

[16] M. Sheik-Bahae, D.J. Hagan, and E.W. Van Stryland: Phys. Rev. Lett., 65(1990), p.96.

Google Scholar

[17] Y. B. Han, J. B. Han, Q. Q. Wang, et al, OPTICS EXPRESS, 13(23), (2005).

Google Scholar

[18] M. Sheik-Bahae D.C. Hutchings and E.W. Van Stryland: IEEEJ. Quantum Electron QE-27(1991), p.1296.

DOI: 10.1109/3.89946

Google Scholar