A Novel Method for the Synthesis of Manganese Oxide Nanostructures in a Microemulsion

Article Preview

Abstract:

Microporous manganese oxide in the form of laminar octahedral compounds (birnessite) has been synthesized facilely in a microemulsion system consisting of benzyl alcohol (BA), sodium dodecyl sulfate (SDS) and water. BA also served as a reducing reagent in the formation of manganese oxides. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Braunauer-Emmett-Teller (BET) measurements. The experimental results indicated that the reaction duration, temperature, and weight ratio of BA/SDS/H2O played key roles in determining the final morophologies of manganese oxide nanomaterials and also in their crystalline phase. Lower process temperature, shorter reaction time and lower BA ratio in the microemulsion were favorable for the formation of birnessite single phase. Mn3O4 nanocrystals appeared at a relatively higher temperature and more BA amount.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 181-182)

Pages:

485-488

Citation:

Online since:

January 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.C. Kim and W.G. Shim: Appl. Catal. B Vol. 98 (2010), p.180.

Google Scholar

[2] H. Chen and J. He: J. Phys. Chem. C Vol. 112 (2008), p.17540.

Google Scholar

[3] I. Atribak, A. Bueno-Lo' pez, A. Garcı'a-Garcı'a, P. Navarro, D. Frı'as and M. Montes: Appl. Catal. B Vol. 93 (2010), p.267.

Google Scholar

[4] R.H. Wang and J.H. Li: Environ. Sci. Technol. Vol. 44 (2010), p.4282.

Google Scholar

[5] H. Chen, J. He, C. Zhang and H. He: J. Phys. Chem. C Vol. 111 (2007), p.18033.

Google Scholar

[6] M. Wang, Y. Wang, W. Tan, F. Liu, X. Feng and L.K. Kooral: J. Soil. Sediment. Vol. 10 (2010), p.879.

Google Scholar

[7] B.C. Jones, A.F. Hollenkamp and S.W. Donne: J. Electrochem. Soc. Vol. 157 (2010), p. A551.

Google Scholar

[8] E. Matsuda, S. Tanaka, K. Koike, A. Tanaka, M. Sano and T. Miyake: Res. Chem. Intermediat. Vol. 34 (2008), p.535.

Google Scholar

[9] G.Q. Diao, L. Yu, M. Sun, Q. Yu, F.Q. Fan and X.H. Na: Chin. J. Catal. Vol. 30 (2009), p.1114.

Google Scholar

[10] M.A. Cheney, P.K. Bhowmik, S.Z. Qian, S.W. Joo, W.S. Hou and J.M. Okoh: J. Nanomater. (2008), No. 763706.

Google Scholar

[11] M.T. Martinez, A.S. Lima, N. Bocchi and M.F.S. Teixeira: Talanta Vol. 80 (2009), p.519.

Google Scholar

[12] S. Ching, E.J. Welch, S.M. Hughes, A.B.F. Bahadoor and S.L. Suib: Chem. Mater. Vol. 14 (2002), p.1292.

Google Scholar

[13] Y. Omomo, T. Sasaki, L. Wang and M. Watanabe: J. Am. Chem. Soc. Vol. 125 (2003), p.3568.

Google Scholar

[14] H. Xu and Q. Liu: Spectrochim. Acta Part A Vol. 70 (2008), p.243.

Google Scholar

[15] L. Xiao, Y. Zhao, J. Yin and L. Zhang: Chem. Eur. J. Vol. 15 (2009), p.9442.

Google Scholar

[16] L. Zhang, Q. Zhou, Z. Liu, X. Hou, Y. Li and Y. Lv: Chem. Mater. Vol. 21 (2009), p.5066.

Google Scholar