The Mechanism and Influence Factors of Struvite Precipitation for the Removal of Ammonium Nitrogen

Article Preview

Abstract:

Struvite (MgNH4PO4∙6H2O) is an insoluble double salt. It can precipitate in places such as pipes, aerators and pumps, which could lead to substantial problems influencing the normal operation of wastewater treatment equipments. At present, removal of ammonium nitrogen from various wastewaters by the formation of struvite has been widely investigated. This paper reviewed the research and application efforts concerning the treatment of ammonium nitrogen by struvite precipitation, which were obtained at home and abroad in recent years. The mechanism and influence factors of struvite precipitation for ammonium nitrogen removal were discussed. Additionally, the problems that still should be resolved and the research directions in future were pointed out.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 189-193)

Pages:

2613-2620

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A M, Rawn, B.A., Perry and R. Pomeroy: Transactions of the American Society of Agricultural and Biological Engineers, Vol. 105(1939), p.93.

Google Scholar

[2] J. Borgerding: Journal of the Water Pollution Control Federation, Vol. 44(1972), p.813.

Google Scholar

[3] D. Mamais, P.A. Pitt, Y.W. Cheng, J. Loiacono and D. Jenkins: Water Environment Research, vol. 66(1994), p.912.

Google Scholar

[4] K.K. Mohajit, E. Bhaattarai, P. Taiganides: Biol Wastes, Vol. 30(1989), p.133.

Google Scholar

[5] A.R. Pitman, S.L. Deacon and W.V. Alexander: Water Research, Vol. 25(1991), p.1285.

Google Scholar

[6] K.M. Webb and G.E. Ho: Water Science and Technology, Vol. 26(1992), p.2229.

Google Scholar

[7] S. He, Y. Zhang, M. Yang, W. Du and H. Harada: Vol. 66(2007), p.2233.

Google Scholar

[8] H. M. Huang, X. M. Xiao and B. Yan: Water Science and Technology, Vol. 59(2009), p.1093.

Google Scholar

[9] I. Stratful, M. D. Scrimshaw and J. N. Lester: Water Research, Vol. 35(2001), p.4191.

Google Scholar

[10] H. M. Huang, X. M. Xiao, L. Yang and B. Yan: Water Science and Technology, Vol. 61(2010), p.2741.

Google Scholar

[11] H. M. Huang, X. M. Xiao, L. Yang and B. Yan: Water Practice and Technology, Vol. 5(2010), doi: 10. 2166/wpt. 2010. 007.

Google Scholar

[12] C. Di Iaconi, M. Pagano, R. Ramadori and A. Lopez: Bioresource Technology, Vol. 101(2010), p.1732.

DOI: 10.1016/j.biortech.2009.10.013

Google Scholar

[13] T. Chen, X. Huang, M. Pan, S. Jin, S. Peng and P. Fallgren: Journal of Hazardous Materials, Vol. 168(2009), p.843.

Google Scholar

[14] X. Quan, C. Ye, Y. Xiong, J. Xiang and F. Wang: Journal of Hazardous Materials, Vol. 178(2010), p.326.

Google Scholar

[15] S. Uludag-Demirer and M. Othman: Bioresource Technology, Vol. 100(2009), p.3236.

Google Scholar

[16] N.O. Nelson, R.L. Mikkelsen and D.L. Hesterberg: Bioresource Technology, Vol. 89(2003), p.229.

Google Scholar

[17] G. El Diwani, Sh. El Rafie, N.N. El Ibiari and H.I. El-Aila: Desalination, Vol. 214(2007), p.200.

DOI: 10.1016/j.desal.2006.08.019

Google Scholar

[18] Dictionary of Inorganic compounds, vo1. 3, C46·Zr, London: Chapman & Hall, (1992).

Google Scholar

[19] F. Mijangos, M. Kamel, G. Lesmesa and D.N. Muraviev: Reactive and Functional Polymers, Vol. 60(2004), p.151.

Google Scholar

[20] J.D. Doyle, S.A. Parsons: Water Research, Vol. 36(2002), p.3925.

Google Scholar

[21] R.E. Loewenthal, U.R.C. Kornmuller and E.P. van Heerden: Water Science and Technology, Vol. 30(1994), p.107.

Google Scholar

[22] J.R. Burns, and B. Finlayson: The Journal of Urology, Vol. 128(1982), p.426.

Google Scholar

[23] A.W. Taylor, A.W. Frazier and E.L. Gurney: Transactions of the Faraday Society, Vol. 59(1963), p.1580.

Google Scholar

[24] J.R. Buchanan, C.R. Mote and R.B. Robinson: Transactions of the American Society of Agricultural and Biological Engineers, Vol. 37(1994), p.617.

Google Scholar

[25] H.K. Aage, B.L. Anderson, A. Blom and I. Jensen: Journal of Radioanalytical and Nuclear Chemistry, Vol. 223(1997), p.213.

Google Scholar

[26] K.N. Ohlinger, T.M. Young and E.D. Schroeder: Journal of Environmental Engineering, Vol. 126(2000), p.361.

Google Scholar

[27] M. Türker and I. Çelen: Bioresource Technology, Vol. 98(2007), p.1529.

Google Scholar

[28] J. Hoffmann, J. Gluzinska and J. Kwiecien, in: International Conference for Struvite: its Role in Phosphorus Recovery and Reuse. Cranfield University, UK, (2004).

Google Scholar

[29] J. Wang, Y. Song, P. Yuan, J. Peng and M. Fan: Chemosphere, Vol. 65(2006), p.1182.

Google Scholar

[30] C. Di Iaconi, M. Pagano, R. Ramadori and A. Lopez: Bioresource Technology, Vol. 101(2009), p.1732.

DOI: 10.1016/j.biortech.2009.10.013

Google Scholar

[31] T. Zhang, L. Ding and H. Ren: Journal of Hazardous Materials, Vol. 166(2009), p.911.

Google Scholar

[32] A. Gunay, D. Karadag, I. Tosun and M. Ozturk: Journal of Hazardous Materials, Vol. 156(2008), p.619.

Google Scholar

[33] K. Yetilmezsoy and Z. Sapci-Zengin: Journal of Hazardous Materials, Vol. 166(2009), p.260.

Google Scholar

[34] Y. Jaffer, T.A. Clark, P. Pearce and S.A. Parsons: Water Research, Vol. 36(2002), p.1834.

Google Scholar

[35] B. Yan, C. Hu, F. Zhu and C. Wei: Environmental Chemistry, Vol. 24(2005), p.685.

Google Scholar

[36] H D. Ryu, D. Kim and S. Lee: Journal of Hazardous Materials, Vol. 156(2008), p.163.

Google Scholar

[37] J. Wang, J. G. Burken and X. Q. Zhang: Water Environmental Research, Vol. 78(2006), p.125.

Google Scholar

[38] Y. Matsumiya, T. Yamasita and Y. Nawamura: Journal of the Chartered Institution of Water and Environmental Management, Vol. 14(2000), p.291.

Google Scholar

[39] T. Maekawa, C.M. Laio and X.D. Feng: Water Research, Vol. 29(1995), p.2643.

Google Scholar

[40] X. Z. Li, Q. L. Zhao and X. D. Hao: Waste Management, Vol. 19(1999), p.409.

Google Scholar

[41] D. Kim, H. D. Ryu, M. S. Kim, J. Kim and S. Lee: Journal of Hazardous Materials, Vol. 146(2007), p.81.

Google Scholar

[42] J. M Chimenos., A.I. Fernández, G. Villalba, M. Segarra, A. Urruticoechea, B. Artaza and F. Espiel: Water Research, Vol. 37(2003), p.1601.

DOI: 10.1016/s0043-1354(02)00526-2

Google Scholar

[43] M. Benisch, D. Clark, R.G. Sprick and R. Baur: Water Environment and Technology, Vol. 14(2002), p.51.

Google Scholar

[44] S. Huo, B. Xi, H. Liu, Y. Song and L. He: Chemical Industry and Engineering Progress, Vol. 26(2007), p.371.

Google Scholar

[45] P. Battistoni, P. Pavan, F. Cecchi and J. Mata-Alvarez: Water Science and Technology, Vol. 38(1998), p.275.

Google Scholar

[46] P. Battistoni, G. Fava, P. Pavan, A. Musacco and F. Cecchi: Water Research, Vol. 31(1997), p.2925.

DOI: 10.1016/s0043-1354(97)00137-1

Google Scholar

[47] M. Ali and P. A. Schneider: Chemical Engineering Science, Vol. 61(2006), p.3951.

Google Scholar

[48] Y. Song, P. Yuan, B. Zheng, J. Peng, F. Yuan and Y. Gao: Chemosphere, Vol. 69(2007), p.319.

Google Scholar

[49] K.S. Le Correa, E. Valsami-Jones, P. Hobbs: Journal of Crystal Growth, Vol. 283(2005), p.514.

Google Scholar

[50] B.Y.M. Mathew, P. Kingsbury, S. Takagi and W. E. Brown: Acta Crystal, Vol. 38(1982), p.40.

Google Scholar

[51] A.N. Kofina and P.G. Koutsoukos, in: International Conference on Struvite: Its Role in Phosphorus Recovery and Reuse, Cranfield (UK), (2004).

Google Scholar