The Properties of Organosolv Pulp and Cellulose from Eucalyptus with MK2

Article Preview

Abstract:

In order to decline the energy consumption in pulping process and keep the crystallinity of the cellulose in pulp, eucalyptus was selected in this study. Different quantities of ethanol, formic acid and MK2 and different experimental conditions led to different contents of alpha -cellulose and different crystallinities of the cellulose. The reduction of the kappa number of the pulp resulted from the increase of the liquor-to-wood ratio. With the addition of the MK2, a small quantity of ethanol could gain lower kappa number than original. Increasing the retention time and liquor-to-wood ratio played a significant role in keeping crystallinity with the addition of MK2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 194-196)

Pages:

2499-2502

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ekono Oy, Helsinki, Finl, Ekono Oy, Helsinki, Finl. New Aspects in Sulfite Pulping Energy Economy. 1986 International Sulphite Conference. (1986), pp.151-157.

Google Scholar

[2] Zacchi, Guido; Wennersten, Ronald; Aly, Gharib. Applicability of Some Energy-saving Techniques in A Distillation-extraction Process for Treatment of Sulfite Pulping Condensates and Economic by-product Recovery. 5th International Congress in Scandinavia on Chemical Engineering. 222nd Event of the European Federation of Chemical Engineering. (1980).

Google Scholar

[3] Mannisto, Heikki; Sebbas, Eva; Westerberg, E. Norman. Tappi Journal. 62(8), (1979), pp.31-34.

Google Scholar

[4] E. Kendall Pye and Jairo H. Lora. Tappi Journal. March (1991), pp.113-117.

Google Scholar

[5] Abd El-Ghany, Nahed A. Cellulose Chemistry and Technology. 43(9-10), (2009), pp.419-426.

Google Scholar

[6] González, M.; Cantón, L.; Rodríguez, A.; Labidi, J. Bioresource Technology. 99(14), (2008), pp.6621-6625.

Google Scholar

[7] Sannigrahi, Poulomi ; Miller, Stephen J. ; Ragauskas, Arthur J. Carbohydrate Research. 345(7), (2010), pp.965-970.

Google Scholar

[8] Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. Fuel Processing Technology. 91(7), (2010), pp.759-764.

DOI: 10.1016/j.fuproc.2010.02.009

Google Scholar

[9] Morelli, Fernanda C.; Filho, Adhemar Ruvolo. Polimeros. 20(2), (2010), pp.121-125.

Google Scholar

[10] Sviridov, A.F.; Tsvankin, D. Ya.; Pertsin, A.I. Polymer science USSR. 26(7), (1984), pp.1741-1745.

Google Scholar

[11] Moharram, M.A.; Mahmoud, Osama M. Journal of Applied Polymer Science. 105(5), (2007), pp.2978-2983.

Google Scholar

[12] Smole, Majda Sfiligoj; Peršin, Zdenka; Kreze, Tatjana; Kleinschek, Karin Stana; Ribitsch, Volker; Neumayer, Susanne. Materials Research Innovations. 7(5), (2003), pp.275-282.

DOI: 10.1007/s10019-003-0264-0

Google Scholar

[13] Kennedy, Craig J.; Cameron, Graeme J.; Sturcová, Adriana; Apperley, David C.; Altaner, Clemens; Wess, Timothy J.; Jarvis, Michael C. Cellulose. 14(3), (2007), pp.235-246.

Google Scholar

[14] Sato, Kazuishi; Mochizuki, Hisaya; Okajima, Kunihiko; Yamane, Chihiro. Polymer Journal. 36(6), (2004), pp.478-482.

Google Scholar

[15] Suzuki, Hiroshi; Kamiyama, Tomoaki. Journal of Wood Science. 50(4), (2004), pp.351-357.

Google Scholar

[16] Garvey, Christopher J.; Parker, Ian H.; Simon, George P. Macromolecular Chemistry and Physics. 206(15), (2005), pp.1568-1575.

Google Scholar