Physics of Flexible Magnetic Filaments

Article Preview

Abstract:

A model of elastic magnetic filaments is developed, which allows investigating the dependence of filament dynamics on such physical parameters as magnetoelastic number (Cm), frequency of magnetic field, coefficient of friction, etc. By numerical simulation of the dynamics of filament shaping under the action of magnetic field it is shown that a characteristic U-like stable shape (hairpins) can form. Such a shape of filament can exist in the case of low-frequency rotating magnetic field. At the frequency increasing the U-like shape transforms to the S-like one. In the present work it is shown that in unsteady magnetic field a flexible magnetic filament “swims” in the direction of magnetic field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

221-224

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Minc N., Viovy J.L. (2004) Microfluidique et applications biologiques : enjeux et tendances C.R. Physique 5 565-575.

DOI: 10.1016/j.crhy.2004.04.003

Google Scholar

[2] Doyle P.S., Bibette J., Bancaud A., Viovy J.L. (2002) Self-assembling magnetic matrices for DNA seperation chips Science 295 2237.

DOI: 10.1126/science.1068420

Google Scholar

[3] V.P. Scherbakov, M. Winklhofer, M. Hanzlik, N. Petersen. (1997) Elastic stability of chains of magnetosomes in magnetotactic bacteria Eur. Biophys. J. 26 319-326.

DOI: 10.1007/s002490050086

Google Scholar

[4] C. Goubault, P. Jop, M. Fermigier, J. Baudry, E. Bertrand, and J. Bibette. (2003) Phys. Rev. Lett., vol. 91, p.260802.

DOI: 10.1103/physrevlett.91.260802

Google Scholar

[5] S.L. Biswal, A.P. Gast. (2003) Mechanics of semiflexible chains formed by poly (ethylene glycol) – linked paramagnetic particles. Phys. Rev. E, vol. 68, p.021402.

DOI: 10.1103/physreve.68.021402

Google Scholar

[6] C. Goubault et al. (2003) Flexible magnetic filaments as micromechanical sensors. Phys. Rev. Lett., vol. 91, p.260802.

Google Scholar

[7] A. Cēbers, I. Javaitis. (2004) Dynamics of a flexible magnetic chain in a rotating magnetic field. Phys. Rev. E 69, p.021404.

DOI: 10.1103/physreve.69.021404

Google Scholar

[8] A. Cēbers, I. Javaitis. (2004) Bending of flexible magnetic rods. Phys. Rev. E 70, p.021404.

DOI: 10.1103/physreve.70.021404

Google Scholar

[9] A. Cēbers, I. Javaitis. (2004) Dynamics of flexible magnetic filaments. Magnetohydrodynamics, vol. 40, No 4 , pp.345-350.

Google Scholar

[10] A. Cēbers. (2003) Dynamics of a chain of magnetic particles connected with elastic linkers. Journal of Physics: Condensed Matter vol. 15 pp.1335-1344.

Google Scholar

[11] I. Javaitis (2007) Flexible magnetic swimmer, Latvian Journal of Physics and Technical Sciences., Vol. 1., p.17 – 25.

Google Scholar

[12] A. Cēbers. (2005) Flexible magnetic swimmer. Magnetohydrodynamics, vol. 41, No 1, pp.63-72.

Google Scholar

[13] Belovs M., Cēbers A., Javaitis I. (2005) Bending of flexible magnetic rods. Joint 15-th Riga and 6-th PAMIR International Conference on Fundamental and Applied MHD. Jurmala, Latvia, June 27 – July 1.

Google Scholar

[14] Driķis I., Cēbers A. (2004) Molecular dynamics simulation of the chain of magnetic particles and flexible filament model Magnetohydrodynamics 40 4 351-357.

DOI: 10.22364/mhd.40.4.4

Google Scholar