[1]
Facchinei F. and Pang J.S. Finite-Dimensional variational Inequalities and complementarity problems [M]. Springer, New York, (2003).
DOI: 10.1007/b97544
Google Scholar
[2]
Ferris M.C. and Pang J.S., Engineering and economic applications of complementarity problems, Society for industrial and applied mathematics, 1997, 39(4): 669-713.
Google Scholar
[3]
Sun D. A class of iterative methods for solving nonlinear projection equations[J]. Optim. Theory Appl, 1996, 91: 123-140.
DOI: 10.1007/bf02192286
Google Scholar
[4]
Solodov M V., Convergence rate analysis of iteractive algorithms for solving variational inequality problems [J]. Math Programming, 2003, 96: 513-528.
DOI: 10.1007/s10107-002-0369-z
Google Scholar
[5]
Wang C W., A variational inequalities problem solving the projection algorithm[J]. Chongqing normal college journals. 2005, 22(1): 6-11.
Google Scholar
[6]
Wang Y.J., Xiu N.H. and Wang C.Y., A new version of extragradient method for varitional inequality problems, Comput. Math. Appl., 2001, 42: 969-979.
DOI: 10.1016/s0898-1221(01)00213-9
Google Scholar
[7]
Wang Y.J., Xiu N.H. and Wang C.Y., Unified framework of extragradient-type methods for pseudomonotone varitional inequalities, J. Optim. Theroy Appl., 2001, 111: 641-656.
DOI: 10.1023/a:1012606212823
Google Scholar
[8]
Wang Y.J., Xiu N.H. and Zhang J.Z., Modified extragradient methods for varitional inequalities and verification of solution existence, J. Optim. Theroy Appl., 2003, 119: 167-183.
Google Scholar
[9]
Zarantonello E.H., Projections on convex sets in Hilbert space and spectral theory, contributions to nonlinear functional analysis, New York: Academic Press, (1971).
DOI: 10.1016/b978-0-12-775850-3.50013-3
Google Scholar