The Existence of Analytic Invariant Curves for a Planar Map

Article Preview

Abstract:

In this paper, we study the existence of analytic invariant curves for two-dimensional maps in the complex field C. Employing the method of majorant series, we discuss the eigenvalueof the mapping at a fixed point. We discuss not only thoseat resonance, i.e., at a root of the unity but also thosenear resonance under Brjuno condition.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 225-226)

Pages:

1274-1278

Citation:

Online since:

April 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Fontich, Transversal homoclinic points of a class of conservative diffeomorphisms. J. Differential Equations, vol. 87, pp.1-12 (1990).

DOI: 10.1016/0022-0396(90)90012-e

Google Scholar

[2] J. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fix point. Comm. Pure Appl. Math.,vol. 9, pp.673-692 (1956).

DOI: 10.1002/cpa.3160090404

Google Scholar

[3] J. Moser, On invariant curves of area-preserving maps of an annulus. Nachr. Akad. Wiss. Gottingen,vol. 1, pp.199-226 (1962).

Google Scholar

[4] P. M. Diamond, Analytic invariants of mappings of two variables. J. Math. Anal. Appl., vol. 27, pp.601-608 (1969).

Google Scholar

[5] W. R. Li, S. S. Cheng, Analytic solutions of an iterative functional equations, Aequationes Math., vol. 68, pp.21-27 (2004).

Google Scholar

[6] A. D. Bjuno, Analytic form of differential equations. Trans. Moscow Math. Soc., vol. 25, pp.131-288 (1971).

Google Scholar

[7] S. Marmi, P. Moussa and J.-C. Yoccoz, The Brjuno functions and their regularity properties. Comm. Math. Phys., vol. 186, no. 2, pp.265-293 (1997).

DOI: 10.1007/s002200050110

Google Scholar

[8] M. S. Berger, "Nonlinearity and Functional Analysis", Academic Press (1977).

Google Scholar

[9] C.L. Siegel, "Vorlesungenuber Himmelsmechanik," Springer-Verlag: Berlin (1956).

Google Scholar

[10] T. Carletti and S. Marmi, Linearization of Analytic and Non-Analytic Germs of Diffeomorphisms of (C, 0). Bull. Soc. Math., France, vol. 128, pp.69-85 (2000).

DOI: 10.24033/bsmf.2363

Google Scholar

[11] A. M. Davie, The critical function for the semistandard map. Nonlinearity, vol. 7, pp.219-229 (1994).

DOI: 10.1088/0951-7715/7/1/009

Google Scholar