Enhancement of Crystalization and Photocatalysis of Bi2MoO6 Nanoplates by SDS Assisted Hydrothermal Method

Article Preview

Abstract:

The γ-Bi2MoO6 nanoplates with uniform length and width about 100-200nm have been successfully fabricated by SDS assistant hydrothermal process. The γ-Bi2MoO6 nanoplates were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy. The results show that the SDS plays an important role in controlling the crystallization and morphologies of Bi2MoO6. The γ-Bi2MoO6 nanoplates show high efficient photocatalytic activities in decomposition of methyl orange.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

2091-2097

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. T. Hu, T.W. Odom and C.M. Lieber: Acc. Chem. Res. Vol. 32 (1999), P. 435

Google Scholar

[2] Y. Sun and Y. Xia: Science Vol. 298 (2002), P. 2176

Google Scholar

[3] B. Nikoobakht and M. A. El-Sayed: Chem. Mater. Vol. 15 (2003), P. (1957)

Google Scholar

[4] Y. Cui and C. M. Lieber: Science Vol. 291 (2001), P. 851

Google Scholar

[5] C. Qian, F. Kim and L. Ma: J. Am. Chem. Soc. Vol. 126 (2004), P. 1195

Google Scholar

[6] N. Baux, R.N. Vannier and G. Mairesse: Solid State Ionics Vol. 91 (1996), P. 243

Google Scholar

[7] M.S. Islam, S. Lazure and R.N. Vannier: Mater. Chem. Vol. 8 (1998), P. 655

Google Scholar

[8] O.M. Bordun: Inorg. Mater. Vol. 34 (1998), P. 1270

Google Scholar

[9] A. Kudo and S. Hijii: Chem. Lett. Vol. 10 (1999), P. 1103

Google Scholar

[10] J.W. Tang, Z.G. Zou and J.H. Ye: Catal. Lett. Vol. 92 (2004), P. 53

Google Scholar

[11] H. Fu, C. Pan and W. Yao: J. Phys. Chem. B Vol. 109 (2005), P. 22432

Google Scholar

[12] J.G. Yu, J.F. Xiong and B. Cheng: J. Solid State Chem. Vol. 178 (2005), P. (1968)

Google Scholar

[13] J.H. Bi, L. Wu and J. Li: Acta Mater. Vol. 55 (2007), P. 4699

Google Scholar

[14] L.S. Zhang, W.Z. Wang and L. Zhou: Small Vol. 3 (2007), P. 1618

Google Scholar

[15] L. Zhou, W. Wang and L. Zhang: Journal of Molecular Catalysis A: Chemical Vol. 268 (2007), P. 195

Google Scholar

[16] A. Cruz, S.M.G. Marcos Villarreal and L.M. Torres-Martinez: Materials Chemistry and Physics Vol. 112 (2008), P. 679

Google Scholar

[17] L.J. Xie, J.F. Ma and G.J. Xu: Materials Chemistry and Physics Vol. 110 (2008), P. 197

Google Scholar

[18] H.D. Xie, D.Z. Shen and X.Q. Wang: Materials Chemistry and Physics Vol. 110 (2008), P. 332

Google Scholar

[19] F.D. Hardcastle and I.E. Wachs: J. Phys. Chem. Vol. 95 (1991), P. 10763

Google Scholar

[20] M. Maczka, J. Hanuza and W. Paraguassu: Appl. Phys. Lett. Vol. 92 (2008), P. 112911

Google Scholar

[21] Y. Zheng, F. Duan and J. Wu: Journal of Molecular Catalysis A: Chemical Vol. 303 (2009), P. 9

Google Scholar