Support Effects of PW/SiO2 on Friedel-Crafts Acylation of Toluene with Acetic Anhydride

Article Preview

Abstract:

Support effects of PW/SiO2 on MPA (p-methoxyacetophenone) synthesis from toluene and acetic anhydride were carefully studied, and catalysts were carefully characterized by BET, XRD and NH3-TPD. The charactrerized results displayed that the interaction between PW and SiO2 prevented the loss of acidic protons from PW to form the weak acid PW12O38.5 over PW/SiO2. The weak acid site PW12O38.5 over PW/SiO2 came into being only in case of much more PW being loaded onto SiO2, and the appearance of PW12O38.5 over PW/SiO2 resulted in MPA yield decline.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 233-235)

Pages:

58-61

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Olah, Friedel-Crafts and Related Reactions, vols. I-IV, Wiley-Interscience, New York, 1963–1964; G.A. Olah, in: Friedel–Crafts and Related Reactions, Wiley-Interscience, New York, 1973.

DOI: 10.1126/science.145.3637.1174-b

Google Scholar

[2] P. Botella, A. Corma, J.M. López-Nieto, S. Valencia and R. Jacquot, J. Catal. Vol. 195 (2000), p.161.

Google Scholar

[3] G.V. Shanbhag, S.M. Kumbar, T. Joseph and S.B. Halligudi, Tetrahedron Lett. Vol. 47 (2006), p.141.

Google Scholar

[4] B.M. Choudary, M.L. Kantam, M. Sateesh, K.K. Rao and P.L. Santhi, Appl. Catal. A Vol. 149 (1997), p.257.

Google Scholar

[5] C.L. Padro´ and C.R. Apesteguı´a, Catal. Today Vol. 107–108 (2005), p.258.

Google Scholar

[6] I.V. Kozhevnikov, Chem. Rev. Vol. 98 (1998), p.171.

Google Scholar

[7] J. Kaur, K. Griffin, B. Harrison and I. V. Kozhevnikov, J. Catal. Vol. 208 (2002), p.448.

Google Scholar

[8] B. Bachiller-Baeza and J.A. Anderson, J. Catal. Vol. 228 (2004), 225.

Google Scholar

[9] L.A.M. Cardoso, W. Alves, A.R.E. Gonzaga, L.M.G. Aguiar and H.M.C. Andrade, J. Mol. Catal. A: Chem. Vol. 209 (2004), p.89.

Google Scholar

[10] G.D. Yadav and H.G. Manyar, Micropor. Mesopor. Mater. Vol. 63 (2003), p.85.

Google Scholar

[11] Y. Wu, X. Ye, X. Yang, X. Wang, W. Chu and Y. Hu, Ind. Eng. Chem. Res. Vol. 35 (1996), p.2546.

Google Scholar

[12] G.D. Yadav and G. George, J. Mol. Catal. A: Chem. Vol. 292 (2008), p.54.

Google Scholar

[13] K.M. Parida, Sujata Mallick and G.C. Pradhan, J. Mol. Catal. A: Chem. Vol. 297 (2009), p.93.

Google Scholar

[14] B.M. Devassy and S.B. Halligudi, J. Mol. Catal. A: Chem. Vol. 253 (2006), p.8.

Google Scholar

[15] B.M. Devassy and S.B. Halligudi, J. Catal. Vol. 236 (2005), p.313.

Google Scholar

[16] B.M. Devassy, F. Lefebvre and S.B. Halligudi, J. Catal. Vol. 231 (2005), p.1.

Google Scholar

[17] C. Trolliet, G. Coudurier and J.C. Vedrine, Top. Catal. Vol. 15 (2001), p.73.

Google Scholar

[18] G.I. Kapustin, T.R. Brueva, A.L. Klyachko, M.N. Timofeeva, S.M. Kulikov and I.V. Kozhevnikov, Kinet. Katal. Vol. 31 (1990), p.1017.

Google Scholar

[19] A. Biela´nski, A. Luba´nska, J. Po´zniczek and A. Micek-Ilnicka, Appl. Catal. A Vol. 238 (2003), p.239.

Google Scholar

[20] J.B. Moffat, Metal-Oxygen Clusters.The Surface and Catalytic Properties of Heteropoly Oxometalates. Kluwer, New York, 2001.

Google Scholar

[21] M.R.H. Siddiqn, S. Holmes, H. He, W. Smith, E.N. Coker, M.P. Atkins, I.V. Kozhevnikov, Catal. Lett. 66 (2000) 53-57.

Google Scholar