A New Preparation Method for Amorphous Co-B Alloys Nanoparticles

Article Preview

Abstract:

The Co–B alloy can be prepared facilely by a solid-solid reaction of CoCl2•6H2O and KBH4 powders at room temperature. Various characterizations, such as the chemical analysis, inductively coupled plasma-atomic emission spectroscopy (ICP), powder X-ray diffraction, electron diffraction and TEM have been performed. The results indicate that the Co-B alloy obtained by the solid-solid reaction is amorphous nanoparticles. The composition of the alloy is Co1.36B. The average diameter of the Co–B alloy nanoparticles is 30nm–50nm. The room temperature solid-solid reaction is mainly a surface reaction. The direct solid solid reaction between the borohydride and some metal-salts is thermodynamically possible. This simple preparation method may also be used for the large-scale production of the amorphous nanoparticles of some metal-boron alloys.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

1717-1720

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.Z. Yuan and D.P. Zhang: Intermetallics Vol. 17 (2009), p.281

Google Scholar

[2] H. Li, C.Z. Wang, Q.F. Zhao and H.X. Li: Applied Surface Science Vol. 254 (2008), p.7516

Google Scholar

[3] P. Kukula, V. Gabova, K. Koprivova and P. Trtik: Catalysis Today Vol., 121 (2007), p.27

DOI: 10.1016/j.cattod.2006.11.009

Google Scholar

[4] Z.Y. Ma, L.X. Zhang, R.Z. Chen, W.H Xing and N.P. Xu: Chemical Engineering Journal Vol. 138 (2008), p.517

Google Scholar

[5] Y. Wada, H. Kuramoto, T. Sakada, H. Mori, S. Hirotaro, T. Sumida, T. Kitamura and S. Yanagida: Chem. Lett. Vol. 7 (1999), p.607

Google Scholar

[6] F. Cea, R.W. Devenish, T. Goulding, B.T. Heaton, C.J. Kiely, I.I. Moiseev, A.K. Smith, J. Temple and M. Vargaftik: Inst. Phys. Conf. Ser. Vol. 138 (Electron Microsscopy and Analysis) (1993), p.477

Google Scholar

[7] R.W. Devenish, T. Goulding, B.T. Heaton and R. Whyman: J. Chem. Soc., Dalton Trans. Vol. 5 (1996), p.673

Google Scholar

[8] Y. Wang, J.W. Ren, K. Deng, L.L. Gui and Y.Q. Tang: Chem. Lett. Vol. 12 (2000), p.1622

Google Scholar

[9] G.D. Forster, L.F. Barquin, R.L. Bilsborrow, Q.A. Pankhurst, I.P. Parkin and W.A. Steer: J. Mater. Chem. Vol. 9 (1999), p.2537

Google Scholar

[10] N.N. Greewood and A. Earnshaw: Chemistry of the Elements (Pergamon Press, Oxford 1984)

Google Scholar

[11] J. van Wonterghem, S. Morup, C.J.W. Koch, S.W. Charles and S. Wells: Nature Vol. 322 (1986), p.622

Google Scholar

[12] S. Wells, S.W. Charles, S. Morup, S. Linderoth, J. van Wonterghem, J. Larsen and M.B. Madsen: J. Phys: Condens. Matter Vol. 1 (1989), p.8199

Google Scholar

[13] J. Shen, Z. Hu, Q. Zhang, L. Zhang and Y.Chen: J. Appl. Phys. Vol. 71 (1992), p.5217

Google Scholar

[14] S. Linderoth and S. Morup: J. Appl. Phys. Vol. 69 (1991), p.5256

Google Scholar

[15] G.Q. Zhong, H.L. Zhou, J.R. Zhang and Y.Q. Jia: Mater. Lett. Vol. 59 (2005), p.2252

Google Scholar