Facile and Scaled-Up Synthesis of Inorganic Metallic Ions Doped Nanoscaled Titanium Dioxides and their Enhanced Photocatalytic Property for Phenol Degradation

Article Preview

Abstract:

Photodegradation emerged as an effective technology for elimination of phenol and phenolic compound contaminants. In this paper, we developed an facile and scaled-up synthesis method for production of nanoscaled titanium dioxide (TiO2) photocatalysts doped with inorganic metallic ions of Sn, Zn, Fe, Cr, Mo, W, V, Ce, Au, Ag, Pt, and Pd. The obtained photocatalysts show relatively small sizes around 10 nm with highly crystallinity and narrow size distribution, and their efficiencies for photocatalytic degradation of phenol are greatly enhanced by doping the metallic ions. The photocatalytic efficiencies of nanoscaled TiO2 photocatalysts for phenol degradation could be improved to 93.6%, 89% and 98% by doping 2 wt.% Cr, 10 wt.% Ce, and 10 wt.% Pd, respectively, compared with that of the undoped nanoscaled TiO2 photocatalysts around 42.5%. The doped nanoscaled TiO2 photocatalysts may find potential application in treatment of phenol and phenolic compounds contaminants in industrial waste water.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

1697-1706

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Nagaveni , G. Madras, Environ. Sci. Technol. 38 (2004) 1600-1604.

Google Scholar

[2] M. Davoren, A.M. Fogarty, Ecotoxicol. Environ. Saf., 60 (2005) 203–212.

Google Scholar

[3] R. Debus, R. Niemann, Chemosphere, 29 (1994) 611–621.

Google Scholar

[4] K. Nagaveni, G. Sivalingam, M. S. Hegde, G. Mardras, Environ. Sci. Technol. 38 (2004) 1600-1604.

Google Scholar

[5] L. Liu, H. Liu, Y. Zhao, Y. Wang, Y. Duan, G. Gao, M. Ge, W. Chen, Environ. Sci. Technol. 42 (2008) 2342-2348.

Google Scholar

[6] S. han,S. Choi, S. Kim, M. Cho, B. Jang, D. Kim, J. Yoon, T. Hyeon, Small 1 ( 2005) 812-816.

Google Scholar

[7] S. Ahn, S. Congeevaram, Y-K. Choung, J. Park, Desalination 221 (2008) 494–501.

Google Scholar

[8] H. Gomez, J. Chil. Chem. Soc. 51 (2006) 1006–1009.

Google Scholar

[9] S. Roy, G. Madras, J. Phys. Chem. C. 111 (2007) 8153–8160.

Google Scholar

[10] T. Machold, Journal of Molecular Catalysis A: Chemical. 280 (2008) 122–130.

Google Scholar

[11] H.X. Li, J. Am. Chem. Soc. 129 (2007) 4538–4539.

Google Scholar

[12] F. Galindo, R. G´omez, Journal of Molecular Catalysis A: Chemical. 281 (2008) 119–125.

Google Scholar

[13] F. Sayılkan, Journal of Hazardous Materials. 144 (2007) 140–146.

Google Scholar

[14] W. Choi, A. Termin, M. Hoffman, J. Phys. Chem. 98 (1994) 13669-13679.

Google Scholar

[15] C. Wu, C. Chao, F. Kuo, Catalysis Today 97 (2004) 103-112.

Google Scholar

[16] A. A. Ismail,D. W. Bahnemann, L. Robben, V. Yarovyi, M. Wark, Chem. Mater. 22 (2010) 108-106.

Google Scholar

[17] K. Nagaveni, M. S. Hegde, and Giridhar Madras, J. Phys. Chem. B 108 (2004) 20204-20212.

Google Scholar

[18] G. Colon, Journal of Photochemistry and Photobiology A: Chemistry. 179 (2006) 20–27.

Google Scholar

[19] Z.Y. Liu, Akira Fujishima, J. Phys. Chem. C. 112 (2008) 253–259.

Google Scholar

[20] M.C. Hidalgo, Catalysis Today. 129 (2007) 43–49.

Google Scholar

[21] Xavier Doménech, Applied Catalysis B: Environmental. 30 (2001) 359–373.

Google Scholar

[22] Z. Ding, G. Q. Lu, J. Phys. Chem. B. 104 (2000) 4815–4820.

Google Scholar

[23] Dmitry Shchukin, Photochem. Photobiol. Sci. 3 (2004) 142–144.

Google Scholar

[24] A. Dobosz, A. Sobczynski, Water Research. 37 (2003) 1489–1496.

Google Scholar

[25] L.Q. Jing, H.G. Fu, Journal of Solid State Chemistry. 177 (2004) 3375–3382.

Google Scholar

[26] L.Q. Jing, H.G. Fu, Applied Catalysis B: Environmental. 62 (2006) 282–291.

Google Scholar

[27] Neil J. Coville, Applied Catalysis A: General. 317 (2007) 195–203.

Google Scholar

[28] Y. Bessekhouad, J. V. Weber, J. Photochem. Photobiol. 157 (2003) 47–53.

Google Scholar

[29] G. Oskam, A. Nellore, P. C. Searson, J. Phys. Chem. B. 107 (2003) 1734–1738.

Google Scholar

[30] Jianhui Sun, Journal of Molecular Catalysis A: Chemical. 260 (2006) 241–246.

Google Scholar

[31] C. M. Fan, Y. P. SUN, Trans. Nonferrous Met. Soc. China. 17 (2007) s716–s720.

Google Scholar

[32] C. C. Pan, Jeffrey C.S. Wu, Materials Chemistry and Physics. 100 (2006) 102–107.

Google Scholar

[33] V. Murugesan, Water Research. 38 (2004) 3001–3008.

Google Scholar

[34] J. Lukac, Applied Catalysis B: Environmental. 74 (2007) 83–91.

Google Scholar

[35] Giridhar Mardras. Environ. Sci. Technol. 38 (2004) 1600–1604.

Google Scholar

[36] M. Bosco, M. S. Larrechi, Anal Bioanal Chem. 390 (2008) 1203–1207.

Google Scholar

[37] M. V. Bosco, M. Garrido, M.S. Larrechi, Analytica Chimica Acta. 559 (2006) 240–247.

Google Scholar

[38] K. S. Rajnish, M. C. Bhatnagar, and G. L. Sharma, Sens. Actuators B 45 (1997) 209-215.

Google Scholar

[39] J. D. Olivas, C. Mireles, E. Acosta, and E. V. Barrera, Thin Solid Films 299 (1997) 143-148.

DOI: 10.1016/s0040-6090(96)09036-0

Google Scholar

[40] S. Watanabe, X. Ma, and C. Song, J. Phys. Chem. C, 113 (2009) 14249-14257.

Google Scholar