Solvothermal Synthesis of Bi2Se3 Hexagonal Nanosheet Crystals

Article Preview

Abstract:

Bismuth selenide (Bi2Se3) hexagonal nanosheet crystals with uniform size were successfully prepared via a solvothermal method at 160°C for 22 h using bismuth trichloride(BiCl3) and selenium powder(Se) as raw materials, sodium bisulfite(NaHSO3) as a reducing agent, diethylene glycol(DEG) as solvent, and ammonia as pH regulator. Various techniques such as X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and selected area electron diffraction (SAED) were used to characterize the obtained products. Results show that the as-synthesized samples are pure Bi2Se3 hexagonal nanosheet crystals. A possible growth mechanism for Bi2Se3 hexagonal nanosheet crystals is also discussed based on the experiment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

1712-1716

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Cheng, X.P. Zou, W.L. Song, et. al: Chinese Physics Letters Vol. 27(2010), Art. No. 057302

Google Scholar

[2] X.L. Shi, M.S. Cao, J. Yuan, et. al: Applied Physics Letters Vol. 95(2009), Art. No. 163108

Google Scholar

[3] X.L. Shi, M.S. Cao, X.Y. Fang, et. al: Applied Physics Letters Vol. 93(2008), Art. No. 223112

Google Scholar

[4] X.L. Shi, M.S. Cao, J. Yuan, et. al: Applied Physics Letters Vol. 93(2008), Art. No. 183118

Google Scholar

[5] M.S. Cao, H.T. Liu, Y.J. Chen, et. al: Science in China Series E-Technological Sciences Vol. 46(2003): p.104

Google Scholar

[6] D. Arivuoli, F.D. Gnanam and P. Ramasamy: J. Mater. Sci. Lett. Vol. 7(1988), p.711

Google Scholar

[7] H.T. EI-Shair, A.M. Ibrahim, E. A. EI-Wahabb, et al: Vacuum Vol. 42(1991), p.911

Google Scholar

[8] S.K. Mishra, S. Satpathy and O. Jepsen: J. Phys.Condens Mater. Vol. 9(1997), p.461

Google Scholar

[9] A.M. Fernandez and M.G. Merino. Thin Solid Films , Vol. 366(2000), p.202

Google Scholar

[10] X.Q., Clemens Burda, Ruiling Fu, et al: J. Am. Chem. Soc. Vol. 126(2004), p.16276

Google Scholar

[11] S. Xu, W.B. Zhao, J.M. Hong, et al: Materials Letters Vol. 59 (2005), p.319

Google Scholar

[12] X.H. Yang, X. Wang and Z.D. Zhang: Journal of Crystal Growth, Vol. 276(2005), p.566

Google Scholar

[13] D.B. Wang, D.B. Yu, M.S. Mo, et al: Journal of Crystal Growth Vol. 253 (2003), p.445

Google Scholar

[14] Y. Jiang, Y.J. Zhu and G.F. Cheng: Crystal Growth & Design Vol. 6(2006), p.2174

Google Scholar

[15] P.F. Hu, Y.L. Cao, D.Z. Jia , et al: Materials Letters Vol. 64 (2010), p.493

Google Scholar

[16] H.M. Cui, H. Liu, J.Y. Wang, et al: Journal of Crystal Growth Vol. 271 (2004), p.456

Google Scholar

[17] Sudip K. Batabyal, C. Basu, A.R. Das, et al: Materials Letters Vol. 60(2006), p.2582

Google Scholar

[18] J. Li, Y.C. Zhu, J. Du, et al: Solid State Communications Vol. 147(2008), p.36

Google Scholar

[19] W.G. Lu, Y. Ding, Y.X. Chen, et al: J. Am. Chem. Soc. Vol. 27(2005), p.10112

Google Scholar

[20] Jennifer A. Hollingsworth, Damadora M. Poojary, Abraham Clearfield, et. al: J. Am. Chem. Soc. Vol. 122( 2000), p.3562

Google Scholar

[21] W.Z. Wang, B. Poudel, J. Yang, et, al: J. Am. Chem. Soc. Vol. 127(2005), p.13792

Google Scholar