Antioxidant Activities of the Pyroligneous Acid in Living Caenorhabditis Elegans

Article Preview

Abstract:

Pyroligneous acid (PA), obtained from charcoal production, has been reported excellent capability in antioxidant by chemical examination. However, the biological effect of PA in living animal is still unknown. In this study, a simple model organism, the nematode Caenorhabditis elegans, was used as an in vivo system to assess the biological effects of PA treatment. The worms were exposed to concentrated pyroligneous acid (CPA) and extraction (CPAE) thereof in a 0.5-5.0 mg/mL concentration and their brood size and germline cell apoptotisis were examined. The results showed that CPA and CPAE rescued the germline cell apoptosis induced by paraquat, a reactive oxygen species (ROS) generator. Additionally, CPA and CPAE did not show negative effect on the brood size and germline cell apoptosis in wild type at normal culture condition, suggesting safety of PA in living worms. To further scrutinize the antioxidant ability of PA, the apoptotic cell of germline induced by parapuat was assayed after treatment of 0.5 mg/mL CPA, CPAE, L-ascorbic acid and alpha-tocopherol. Treatment with CPAE or L-ascorbic acid could almost completely rescue the germline apoptosis to control level, indicating a potential material in food and biomedicine of PA.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

2564-2569

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.Y. Loo, K. Jain and I. Darah: Food Chem. Vol. 107 (2008), p.1151

Google Scholar

[2] M.D. Guille'n, and M.L. Ibargoitia: J. Agr. Food Chem. Vol. 44 (1996a), p.1302

Google Scholar

[3] M.D. Guille'n, and M.L. Manzanos: Food Chem. Vol. 79 (2002), p.283

Google Scholar

[4] S.Yaman: Energy Convers. Manage. Vol. 45 (2004), p.651

Google Scholar

[5] Y. H. Hwang, Y. I. Matsushita, K. Sugamoto, and T. Matsui: J. Microbiol. Biotechnol. Vol. 15 (2005), p.1106

Google Scholar

[6] A.Y. Loo, K. Jain and I. Darah: Food Chem. Vol. 104 (2007), p.300

Google Scholar

[7] D. Mohan, C. U. Pittman, and P. H. Steele: Energ. Fuel. Vol. 20 (2006), p.848

Google Scholar

[8] Q. Wei, X. H. Mab, Z. Zhao, S. S. Zhang, and S. C. Liu: J. Anal. Appl. Pyrol. Vol. 88 (2010), p.149

Google Scholar

[9] L. J. Bischof, D. L. Huffman, and R. V. Aroian: Methods Mol Biol. Vol. 351 (2006), p.139

Google Scholar

[10] S.Brenner: Genetics. Vol. 77 (1974), p.71

Google Scholar

[11] L. Z. Zhang, G. L. Jie, J. J. Zhang, and B. L. Zhao: Free Radical Bio. Med. Vol. 46 (2009), p.414

Google Scholar

[12] K. Z. Cai, X. L. Liu, Y. J. Xua, C. Ren, H. Chen, J. P. Xua, Z. L. Yu: Sci. Total Environ. Vol. 401 (2008), p.176

Google Scholar

[13] K. O. Kelly, A. F. Dernburg, G. M. Stanfield, A. M. Villeneuv: Genetics. Vol. 156 (2000), p.617

Google Scholar

[14] F. H. Kasten: Int. Rev. Cytol. Vol. 21 (1967), p.141

Google Scholar

[15] Z. Y. Jiang, J. T. Han and X. H. Liu: Adv. Mater. Res. Volumes 152 – 153. (2010), p.1537

Google Scholar

[16] S. Wang, Y. Zhao, L. Wu, M. Tang, C. Su, T. K. Hei, and Z. Yu: Chem. Res. Toxicol. Vol. 20 (2007a), p.181

Google Scholar

[17] M. Keaney, F. Matthijssens, M. Sharpe, J. Vanfleteren, and D. Gems: Free Radical Bio. Med. Vol. 37 (2004) p.239

Google Scholar

[18] Z. E. Suntres: Toxicology. Vol. 180 (2002), p.65

Google Scholar

[19] M. Keaney, and F. Matthijssens: Free Radical Bio. Med. Vol. 37 (2004), p.239

Google Scholar