Study on the Substrate Specificity of Xylose Isomerase N91D Mutant from Thermus thermophilus HB8 by Molecular Simulation

Article Preview

Abstract:

Compared with Thermus thermophilus HB8 xylose isomerase(TthXI), the increase of the substrate specificity on D-xylose of its N91D mutant (TthXI-N91D) was observed in the previous study. In order to clarify the structural mechanism of TthXI-N91D, the complex model of TthXI with D-xylose was constructed by molecular docking method. The TthXI-N91D homology model was built by WATH IF5.0 based on the above complex. The results indicate that the distance between the conserved residue H53 NE2 and D-xylose O5 has decreased in 0.083 nm in the TthXI-N91D active site. The short distance is propitious to transfer the hydrogen atom during the open ring process of substrate. At the same time, the distance between the conserved residue T89 OG1, involving in combining glucose, and D-xylose C5 has reduced 0.133 nm. The shrunken space has an unfavorable effect on accommodating the larger glucose than xylose, and lead to the enhanced specificity for D-xylose.The above phenomenon maybe the main reason for explaining that TthXI-N91D is easy to combine D-xylose showing enhanced specificity. The results paly an important role in understanding the catalytic mechanism of xylose isomerase and provides the base for its molecular design.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

968-973

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Tian, Y.Q. Yao, Z.X. Lin, X.S. Yang: Microbiology China Vol. 34(2007), p.355 (In Chinese)

Google Scholar

[2] S.H. Bhosale, M. Bao, V.V. Deshpande: Microbiol. Rev. Vol. 60(1996), p.280

Google Scholar

[3] G. Edgard, D. Arnaud: Bioresource Technology Vol. 101(2010), p.4980

Google Scholar

[4] K. Dekker, H. Yamagata, K. Sakaguchi, S: Udaka J Bacteriol. Vol.173(1991), p.3078

Google Scholar

[5] A. Lönn, M. Gárdonyi, W.van Zyl, B. Hahn-Hägerdal, R.C. Otero: Eur. J. Biochem. Vol. 269 (2002), p.157

Google Scholar

[6] A. Lönn, K.L. Träff-Bjerre, R.R.C. Otero, W.H. van Zyl. and B. Hahn-Hägerdal: Enzyme Microb. Technol. Vol. 32(2003), p.567

DOI: 10.1016/s0141-0229(03)00024-3

Google Scholar

[7] T. Guo, X.M. Bao: Journal of Shandong University(Natural Science) Vol. 41(2006), p.145 (In Chinese)

Google Scholar

[8] W. Xu, L. Ding, M. Yan, L. Xu: China Biotechnology Vol. 29(2009), p.65 (In Chinese)

Google Scholar

[9] W. Xu, M. Yan, L. Xu, L. Ding, P.K. Ouyang: Enzyme Microb. Tech. Vol. 44(2009), p.77

Google Scholar

[10] W. Xu, M. Yan, L. Ding, Y. Li, L. Xu: Computer and Applied Chemistry Vol.23(2006), p.531 (In Chinese)

Google Scholar

[11] R.A. Sayle, E.J. Milner-White: Trends Biochem Sci. Vol. 20(1995), p.374

Google Scholar

[12] N. Guex, A. Diemand and M.C. Peitsch: Trends Biochem Sci. Vol. 24(1999), p.364

Google Scholar

[13] G. Chinea, G. Padron, R.W.W. Hooft, C. Sander, G. Vriend: Proteins Vol. 23(1995), p.415

Google Scholar

[14] W. Xu, P. Cai, M. Yan, L. Xu, P.K. Ouyang: Chem. J. Chinese U. Vol. 28(2007), p.971. (In Chinese)

Google Scholar

[15] W. Vangrysperre, J. Vandamme, J. Van de Kerckhove, C.K. De Bruyne, R. Cornelis and H. Kersters-Hilderson: Biochem. J. Vol. 265(1990), p.699

DOI: 10.1042/bj2650699

Google Scholar

[16] D.F. Timothy, R. Dagmar, A.P. Gregory: Biochemistry Vol. 43(2004), p.6464

Google Scholar

[17] W. Xu, P. Cai, M. Yan, L. Xu, P.K. Ouyang: Chinese Journal of Chemical Physics Vol. 22 (2009), p.467

Google Scholar

[18] D.W. Richard, Y. Cho, J. Cha: J Biol Chem. Vol. 270(1995), p.22895

Google Scholar