Thermostability Evolution of the Xylanase

Article Preview

Abstract:

Xylanase (E.C 3.2.1.8) is a widespread group of enzyme which can catalyze the endohydrolysis of 1, 4-β-D-xylosidic linkages in xylan. The thermostable xylanase has attracted widely attention because of its application in industrial processes. In this study, the cDNA of xylanase gene was obtained from Aspergillus niger C3486 by RT-PCR. The xylanase DNA contains a 50 bp intron through the comparison between the DNA and cDNA sequence. The thermostability of this xylanase was significantly improved by directed evolution.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

974-980

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Levasseur, M. Asther, and E. Record: Canadian journal of microbiology. Vol. 51 (2005): pp.177-183

Google Scholar

[2] V. Maria, D. Claire, M. J.W ; C. Paul, W. D, J. Nathalie, L. R. J, G. H. J, F. J. E: Journal of molecular biology. Vol. 375 (2008), pp.1293-1305

Google Scholar

[3] J. Georis, F. D. L. Esteves, J. L. Brasseur, V. Bougnet, F. Giannotta, J. M. Frère, B. Devreese, B. Granier: Protein Science. ( 2000), p.466–475.

DOI: 10.1110/ps.9.3.466

Google Scholar

[4] N. Maheshri and D. V. Schaffer: Proceedings of the National Academy of Sciences of the United States of America. Vol. 100 (2003), p.3071–3076.

Google Scholar

[5] B. van Loo, J. H..L. Spelberg, J. Kingma, T. Sonke, M. G. Wubbolts, and D. B. Janssen: Chemistry & biology. Vol. 11 (2004), p.981–990

DOI: 10.1016/j.chembiol.2004.04.019

Google Scholar

[6] T. Nakaniwa, T. Tada, M. Takao, T. Sakai, K. Nishimura: Journal of Molecular Catalysis B: Enzymatic. Vol. 27 (2004), p.127–131

DOI: 10.1016/j.molcatb.2003.10.005

Google Scholar

[7] R. Sriprang, K. Asano, J. Gobsuk, S. Tanapongpipat, V. Champreda, L. Eurwilaichitr: Journal of Biotechnology. Vol. 126 (2006), pp.454-462

DOI: 10.1016/j.jbiotec.2006.04.031

Google Scholar

[8] G. L. Miller: Analytical chemistry. Vol. 31 (1959), pp.426-428

Google Scholar

[9] K. Miyazaki, M. Takenouchi, H. Kondo, N. Noro, M. Suzuki, and S. Tsuda: Journal of Biological Chemistry. Vol. 281 (2006), pp.10236-10242

DOI: 10.1074/jbc.m511948200

Google Scholar

[10] X. L. Li and L. G. Ljungdahl: Applied and environmental microbiology. Vol. 60 (1994), pp.3160-3166.

Google Scholar

[11] C. Dumon, A. Varvak, M. A. Wall, J. E. Flint, R. J. Lewis, J. H. Lakey, C. Morland, P. Luginbuhl, S. Healey, and T. Todaro: Journal of Biological Chemistry. Vol. 283 (2008), p.283(2008), 22557–22564

DOI: 10.1074/jbc.m800936200

Google Scholar

[12] S. Zhang, K. Zhang, X. Chen, X. Chu, F. Sun, and Z. Dong: Biochemical and biophysical research communications. Vol. 395 (2010), p.200–206.

Google Scholar

[13] O. Turunen, M. Vuorio, F. Fenel, and M. Leisola: Protein engineering. Vol. 15 (2002), pp.141-145.

Google Scholar

[14] P. R. Pokkuluri, M. Gu, X. Cai, R. Raffen, F. J. Stevens, and M. Schiffer: Protein Science . Vol. 11 (2002), pp.1687-1694.

DOI: 10.1110/ps.4920102

Google Scholar