Amorphous Au Thin Films and their In Situ Crystallized Nanoparticles

Article Preview

Abstract:

Two-phase thin solid films consisted of Au nanoparticles imbedded in an amorphous matrix were prepared via a series of galvanic replacement reactions between chloroauric acid solution and reducing metals. The Au nanoparticles were in situ crystallized from the amorphous films rather than precipitated from solution directly. Amorphous films with partly crystallized Au nanoparticles only existed stably in dilute chloroauric acid solution. The higher concentration of chloroauric acid evidently promoted the strain-induced crystallization process and accelerated the crystallization of amorphous films into Au nanoparticles with many stacking faults, twins and dislocations. The coexistence of amorphous and crystalline Au nanoparticles makes it possible to synthesize two-phase nanostructured films.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 236-238)

Pages:

990-995

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Mitchell, G. Triani and Z. Zhang: Thin Solid Films vol. 516 (2008), p.8414

Google Scholar

[2] Z. Li, W. Guan, M. Liu, S. Long, R. Jia, J. Lu, Y. Shi and X. Zhao: Thin Solid Films, vol. 516(2008), p.7657

Google Scholar

[3] R. Horie, N. Yasui, Y. Ohashi and T. Den: Thin Solid Films vol. 516 (2008), p.8315

Google Scholar

[4] R.A. Salkar, P. Jeevanandam, S. T. Aruna, K. Yuri and A.Gedanken: J. Mater. Chem. vol. 9 (1999), p.1333

Google Scholar

[5] S. Liu, W. Huang, S. Chen, S. Avivi and A.Gedanken: J. Non-Crystall. Solids, vol. 283 (2001), p.231

Google Scholar

[6] W. Lu, B. Wang, K.D. Wang , X.P. Wang and J.G. Hou: Langmuir, vol. 19 (2003), p.5887

Google Scholar

[7] X.J. Fang, X.N. Ma, H.H. Cai, X.P. Song, B.J. Ding and Y. Guo: Appl. Phys. Lett. vol. 89 (2006), p.173104

Google Scholar

[8] V. German, J. Li, D. Ingert, Z.L. Wang and M.P. Peleni: J. Phys.Chem. B vol. 107 (2003), p.8717

Google Scholar

[9] Y. Chen, X. Gu, C. Nie, Z. Jiang, Z. Xie and C. Lin: Chem. Commun. (2005), p.4181

Google Scholar

[10] J.X. Fang, X.N. Ma, H.H. Cai, X.P. Song and B.J. Ding: Nanotechnology vol. 17(2007), p.5841

Google Scholar

[11] K. Yagi, K. Takayanagi, K. Kobayashi, J. Honio and J. Cryst: Growth vol. 28 (1975), p.117

Google Scholar

[12] C.J. Jonson Johnson, E. Dujardin, S. A. Davis, C. J. Murphyb and S. Mann: J. Mater. Chem. Vol. 12 (2002), p.1765

Google Scholar

[13] L.X. Du, S.J. Yao, X.H. Liu and G.D. Wang: Acta Metall. Sin. Vol. 22 (2009), p.7

Google Scholar

[14] S. Maksimuk, X. Teng and H. Yang: J. Phys. Chem. C vol. 111 (2007), p.14312

Google Scholar

[15] D. Reinhard, B.D. Hall, D. Ugarte and R. Monot: Phys. Rev. B vol. 15 (1997), p.7868

Google Scholar

[16] B. Eghbali and A. Abdollah: Scrip. Mater. vol. 54 (2006), p.1205

Google Scholar

[17] V.V. Voronkova and R. Falster: J. Appl. Phys. vol. 89 (2001), p.5965

Google Scholar

[18] S.W. Lee, M.Y. Huh, S.W. Chae and J.C. Lee: Script. Mater. vol. 54 (2006), p.1439

Google Scholar

[19] J.C. Lee, Y.C. Kim, J.P. Ahn, H.S. Kim, S.H. Lee and B.J. Lee: Acta Mater. vol. 52 (2004), p.1525

Google Scholar

[20] W.H. Wang and M. Atzmon: Acta Mater. vol. 51 (2003), p.4095

Google Scholar

[21] C. Fan, C. Li and A. Inoue: Phys. Rev. B vol. 61 (2000), p.3761

Google Scholar

[22] J.J. Kim, Y. Choi, S. Suresh and A.S. Argon: Science, (2002), p.295

Google Scholar

[23] I. Tetsu, E. Matsubara, S. Ka and M. Hirao: Acta Mater. vol. 52 (2004), p.423

Google Scholar