Direct Writing of Channels for Microfluidics in Silica by MeV Ion Beam Lithography

Article Preview

Abstract:

The lithographic exposure characteristic of amorphous silica (SiO2) was investigated for 6.8 MeV 16O3+ ions. A programmable proximity aperture lithography (PPAL) technique was used for the ion beam exposure. After exposure, the exposed pattern was developed by selective etching in 4% v/v HF. Here, we report on the development of SiO2 in term of the etch depth dependence on the ion fluence. This showed an exponential approach towards a constant asymptotic etch depth with increasing ion fluence. An example of microfluidic channels produced by this technique is demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

132-135

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik, J. Appl. Phys. 92 (2002) 5259.

Google Scholar

[2] J. Wibbeler, G. Pfeifer, and M. Hietschold, Sens and Actua. A 71 (1998) 74.

Google Scholar

[3] J.H. Teng, J.R. Dong, S.J. Chua, B.S. Foo, M.Y. Lai, Y.J. Wang, S.S. Ang, and R. Yin, Appl. Phys. Lett. 90 (2007) 171107.

Google Scholar

[4] J.T. Martin, J.D. Barchas, and K.F. Faull, Anal. Chem. 54 (1982) 1806.

Google Scholar

[5] M. Skupiński, J. Jensen, A. Johansson, G. Possnet, M. Boman, K. Hjort, and A. Razpet, J. Vac. Sci. Technol. B 25(3) (2007) 862.

Google Scholar

[6] J. Jensen, A. Razpet, M. Skupiński, and G. Possnet, Nucl. Instr. Meth. B 243 (2006) 119.

Google Scholar

[7] H. Mekaru, M. Fujimaki, K. Awazu, and M. Takahashi, Microsyst. Technol. 16 (2010) 1339.

Google Scholar

[8] A. Beaumont, C. Dubuc, J. Beauvais, and D. Drouin, J. Vac. Sci. Technol. B 28(5) (2010) 940.

Google Scholar

[9] N. Puttaraksa, S. Gorelick, T. Sajavaara, M. Laitinen, S. Singkarat, and H.J. Whitlow, J. Vac. Sci. Technol. 26(5) (2008) 1732.

DOI: 10.1116/1.2978173

Google Scholar

[10] S. Gorelick, N. Puttaraksa, T. Sajavaara, M. Laitinen, S. Singkarat, and H.J. Whitlow, Nucl. Instr. Meth. B 266 (2008) 2461.

Google Scholar

[11] N. Puttaraksa, S. Unai, M.W. Rhodes, K. Singkarat, H.J. Whitlow, and S. Singkarat, Nucl. Instr. Meth. B (2011).

DOI: 10.1016/j.mee.2012.05.010

Google Scholar

[12] J.A. van Kan, J.L. Sanchez, T. Osipowicz, and F. Watt, Microsyst. Technol. 6 (2000) 82.

Google Scholar

[13] S. Gorelick, F. Zhang, P.G. Shao, J.A. van Kan, H.J. Whitlow, and F. Watt, Nucl. Instr. Meth. B 267 (2009) 2309.

Google Scholar

[14] P. Mistry, I. Gomez-Morilla, G.W. Grime, R.P. Webb, R. Gwilliam, A. Cansell, M. Merchant, K.J. Kirkby, E.J. Teo, M.B.H. Breese, A.A. Bettiol, D.J. Blackwood, and F. Watt, Nucl. Instr. Meth. B 237 (2005) 188.

DOI: 10.1016/j.nimb.2005.04.099

Google Scholar

[15] M.J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed., CRC Press, Boca Raton, 2002, pp.487-490.

Google Scholar