Magnetic Properties of Bulk Zn0.95-XMnXFe0.05O2 Prepared by Sol-Gel Method and Subsequent Hot Pressing

Article Preview

Abstract:

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2 and FeCl2 as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2 powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2 samples in Fe2+ and Mn2+ states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 268-270)

Pages:

356-359

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ohno. Science, Vol. 281(1998), p.951.

Google Scholar

[2] D.P. Norto, S.J. Pearton, A.F. Hebard, et al. Appl. Phys. Lett. Vol. 82(2003), p.239.

Google Scholar

[3] J.Y. Kim, J.H. Park, B.G. Park, et al. Phys. Rev. Lett. Vol. 90(2003), p.017401.

Google Scholar

[4] J. He, S. Xu, Y.K. Yoo, et al. Appl. Phys. Lett. Vol. 86(2005), p.052503.

Google Scholar

[5] K. Sato, H Katayama-Yoshida. Physica E, Vol. 10(2001), p.251.

Google Scholar

[6] T. Dietl, H. Ohno, F. Matsukura, et al. Science, Vol. 287(2000), p.1019.

Google Scholar

[7] D. R. Norton, M. E. Overberg, S. J. Pearton, et al. Appl. Phys. Lett. Vol. 83(2003), p.5488.

Google Scholar

[8] A. Dinia, G. Schmerber, V. Pierron-Bohnes, et al. J. Magnetism & Magnetic Materials, Vol. 286(2005), p.37.

DOI: 10.1016/j.jmmm.2004.09.032

Google Scholar

[9] Y.Z. Peng, W.D. Song, C.W. An, et al. Applied Physics A, Materials Science & Processing, Vol. 80(2005), p.565.

Google Scholar

[10] K. C. Kima, E. K. Kimb, Y. S. Kimc. Superlattices & Microstructures, Vol. 42 (2007), p.246.

Google Scholar

[11] H. J. Lee, S. Y. Jeong, C. R. Cho, et al. Appl. Phys, Lett. Vol. 81(2002), p.4020.

Google Scholar

[12] Y. M. Cho, W. K. Choo, H. Kim, et al. Appl Phys. Lett. Vol. 80(2002), p.3358.

Google Scholar

[13] C. Bundesmann, N. Ashkenov, M. Schubert, et al. Appl Phys Lett, Vol. 83(2003), p. (1974).

Google Scholar

[14] G. Y. Ahn, S. I. Park and C. S. Kim. J Magn Magn Mater, Vol. 303(2006), p. e329.

Google Scholar

[15] Z.G. Yin, N. Chen, F. Yang, et al. Solid State Communication, Vol. 135(2005), p.430.

Google Scholar

[16] P. V. Radovanovic, D. R. Gamelin. Phys. Rev. Lett., Vol. 91(2003), p.157202.

Google Scholar

[17] S. Kolenisk, B. Dabrowski, J. Mais. J Appl Phys, Vol. 95(2004), p.2582.

Google Scholar

[18] Liao Y F, Hsu H S, Huang Y H, et al. J Magn Magn Mater, Vol. 304(2006), p. e161.

Google Scholar

[19] Potzger K, Zhou S Q, Reuther H, et al. Appl Phys Lett, Vol. 88(2006), p.052508.

Google Scholar

[20] Hua-Wei Zhang, Zhi-Ren Wei, Zhi-Qiang Li, et al. Mater Lett, Vol. 61(2007), p.3605.

Google Scholar

[21] C H Choi, S H Kim. Thin Solid Films, Vol. 51(2007), p.2864.

Google Scholar

[22] Shim J H, Hwang T, Lee S, et al. Appl Phys Lett, Vol. 86(2005), p.082503.

Google Scholar

[23] Özgür Ü, Alivov Ya I, Liu, C, et al. J Appl Phys, Vol. 98(2005), p.041301.

Google Scholar

[24] Chattopadhyay A, Sarma S D, Millis A J. Phys Rev Lett, 87(2001), p.227202.

Google Scholar

[25] H.L. Liu, J.H. Yang, Y.J. Zhang, et al. Mater. Chem. Phys., Vol. 112(2008), p.1021.

Google Scholar