Effects of Different Pore-Extending Methods on Morphology of Anodic Aluminium Oxide Templates

Article Preview

Abstract:

Anodic aluminium oxide (AAO) templates were fabricated via a two-step anodization method. On the basis of getting the optimum preparation parameters of AAO templates, effects of two different pore-extending methods on morphology of AAO templates were studied. Field emission scanning electron microscope (SEM) was used to research surface morphology of AAO templates. The SEM images indicated that different pore-extending methods had a significant influence on morphology of AAO templates. The shape of nanopores of AAO templates was cylindrical after floating pore-extending method, but it was truncated cone-shaped with one dimensional gradient using immersed pore-extending method. Meanwhile, mechanism of different pore-extending methods on morphology of AAO templates was elucidated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 282-283)

Pages:

461-465

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima: Nature Vol. 354 (1991), p.56.

Google Scholar

[2] M. H. Dvoret, D. Esteve and C. Urbina: Nature Vol. 360 (1992), p.547.

Google Scholar

[3] H. Dai, E. W. Wong, Y. Z. Lu, S. Fan and C. M. Lieber: Nature Vol. 375 (1995), p.769.

Google Scholar

[4] A. P. Alivisatos: Science Vol. 271 (1996), p.933.

Google Scholar

[5] R. C. Ashoori: Nature Vol. 379 (1996), p.413.

Google Scholar

[6] G. L. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin: Nature Vol. 393 (1998), p.346.

Google Scholar

[7] P. Kohli, C. C. Harrell, Z. H. Cao, R. Gasparc, W. H. Tan and C. R. Martin: Science Vol. 305(2004), p.984.

Google Scholar

[8] Xinyi Zhang, Huanting Wang, Laure Bourgeois, Renji Pan, Dongyuan Zhao and Pual A. Webley: J. Mater. Chem. Vol. 18 (2008), p.463.

Google Scholar

[9] Xinyi Zhang, Dan Li, Laure Bourgeois, Huanting Wang and Pual A. Webley: ChemPhysChem Vol. 10 (2009), p.436.

Google Scholar

[10] X Ren, T Gershon, D C Tza, D Munoz-Rojas, K Musselman and J L MacManus-Driscoll: Nanotechnology Vol. 20 (2009), p.1.

Google Scholar

[11] Xuehua Wang, Chengyong Li, Gui Chen, Lei He and Hong Cao: Appl. Phys. A Vol. 98 (2010), p.745.

Google Scholar

[12] Takashi Kyotani, WeiHua Xua, Yu Yokoyamab, Junichi Inaharab, Hidekazu Touharab and Akira Tomitaa: J. Membr. Sci. Vol. 196 (2002), p.231.

Google Scholar

[13] H. Masuda, F. Hasegawa, S. Ono: J. Electrochem. Soc. Vol. 144 (1997), p.127.

Google Scholar

[14] H. Masuda, K. Yada, A. Osaka: Jpn. J. Appl. phys. Vol. 37 (1998), p.1340.

Google Scholar

[15] M. A. Kashi, A. Ramazani: J. Phys. D: Appl. Phys. Vol. 38 (2005), p.2396.

Google Scholar

[16] H. Masuda, M. Nagae, T. Morikawa, K. Nishio: Jpn. J. Appl. phys. Vol. 14 (2006), p.406.

Google Scholar

[17] L. X. Fan, D. L. Guo, F. Rena, Q. Fua, C. Z. Jiang: Solid State Commun. Vol. 148 (2008), p.286.

Google Scholar

[18] H. Masuda, K. Fukuda: Science Vol. 268 (1995), p.1466.

Google Scholar