Solvothermal Synthesis of Mn-Doped CdS Nanorods Using Single-Source Molecular Precursors

Article Preview

Abstract:

The synthesis of hexagonal phase Mn-doped CdS (Cd1-xMnxS) nanorods was achieved by solvothermal treatment of a class of easily obtained, air-stable single-source molecular precursors (cadmium manganese diethyldithiocarbamates, Cd1-xMnx-(DDTC)2) in ethylenediamine at 180 °C for 12 h. The structures and compositions of the as-synthesized products were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy and transmission electron microscopy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 284-286)

Pages:

667-670

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Cheng, G. Xu, H. Zhang, H. Wang, J. Cao and H. Ji: Mater. Chem. Phys. Vol. 97 (2006), p.448

Google Scholar

[2] M.A. Chamarro, V. Voliotis, R. Grousson, P. Lavallard, T. Gacoin, and G. Counio: J. Cryst. Growth Vol. 159 (1996), p.853

DOI: 10.1016/0022-0248(95)00863-2

Google Scholar

[3] C. Wang, H.M. Wang and Z.Y. Fang: J. Alloy. Comp. Vol. 486 (2009), p.702

Google Scholar

[4] R. Beaulac, P.I. Archer and D.R. Gamelin: J. Solid State Chem. Vol. 181 (2008), p.1582

Google Scholar

[5] C.S. Tiwary, R. Sarkar, P. Kumbhakar and A.K. Mitra: Phys. Lett. A Vol. 372 (2008), p.5825

Google Scholar

[6] M. Tanaka and Y. Masumoto: Solid State Commun. Vol. 120 (2001), p.7

Google Scholar

[7] D.M. Hoffman, B.K. Meyer and A.I. Ekimov: Solid State Commun. Vol. 114 (2000), p.547

Google Scholar

[8] D.S. Reddy, K.N. Rao and K.R. Gunasekhar: Mater. Res. Bull. Vol. 43 (2008), p.3245

Google Scholar

[9] D.S. Reddy, K.N. Rao and K.R. Gunasekhar: J. Alloy. Comp. Vol. 461 (2008), p.34

Google Scholar

[10] D.S. Reddy, D.R. Reddy and N.K Reddy: Solid State Commun. Vol. 142 (2007), p.466

Google Scholar

[11] L. Levy, D. Ingert, N. Feltin and M.P. Pileni: J. Cryst. Growth Vol. 184-185 (1998), p.377

DOI: 10.1016/s0022-0248(98)80080-8

Google Scholar

[12] Y.C. Zhang, W.W. Chen and X.Y. Hu: Mater. Lett. Vol. 61 (2007), p.4847

Google Scholar

[13] Y.C. Zhang, T. Qiao, X.Y. Hu, G.Y. Wang and X. Wu: J. Cryst. Growth Vol. 277 (2005), p.518

Google Scholar

[14] Y.C. Zhang, G.Y. Wang and X.Y. Hu: J. Cryst. Growth Vol. 284 (2005), p.554

Google Scholar

[15] Y.C. Zhang, W.W. Chen and X.Y. Hu: Cryst. Growth Des. Vol. 7 (2007), p.580

Google Scholar

[16] P. Yan, Y. Xie and Y. Qian: Chem. Commun. Issue 14 (1999), p.1293

Google Scholar

[17] T.X. Wang, W.W. Chen: Chem. Eng. J. Vol. 144 (2008), p.146

Google Scholar

[18] Y.C. Zhang, G.Y. Wang, X.Y. Hu: J. Alloy. Comp. Vol. 437 (2007), p.47

Google Scholar

[19] S. Gorai, D. Ganguli and S. Chaudhuri: Mater. Sci. Eng. B Vol. 116 (2005), p.221

Google Scholar

[20] S. Gorai, D. Ganguli and S. Chaudhuri: Cryst. Growth Des. Vol. 5 (2005), p.875

Google Scholar

[21] B. Li, Y. Xie and J. Huang: Nanostruct. Mater. Vol. 11 (1999), p.1067

Google Scholar

[22] B. Li, Y. Xie and J. Huang: Ultrasonics Sonochem. Vol. 6 (1999), p.217

Google Scholar