A Comparative Study of Structural and Optical Properties of ZnO Thin Film Prepared on Sapphire Substrate by PLD and Annealed

Article Preview

Abstract:

ZnO thin films are grown on sapphire substrate by employing a Nd:YAG (1064nm) laser ablation in 1.3 Pa oxygen ambient. X-ray diffraction (XRD) and atomic force microscopy (AFM) observation show that as-grown thin film possess (0002) textured feature and form columnar inclined grains with a small size. The as-grown films show a little oxygen vacancies and Zn interstitial by the analysis of X-ray photoelectron spectroscopy (XPS) and Raman. The annealing treatment in oxygen ambient causes obvious improvement on the structure, surface morphology, compositions and optical properties by the analysis of XRD, AFM, XPS, Raman and photoluminescence (PL) spectra. It can be concluded that the increase of UV emission is oriented to the improvement of structure and decrease of intrinsic defects. The blue emission (430 nm) is attributed to the electronic transition from shallow donor level of Zn interstitial to top level of valence band.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

2397-2400

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S, Koyama, M. Y. Shen, and T. Goto: Appl. Phys. Lett. Vol. 70 (1997), p.2230

Google Scholar

[2] Q. P. Wang, D. H. Zhang, H. L. Ma, X. H. Zhang, and X. J. Zhang: Appl. Surf. Sci. Vol. 220 (2003), p.12

Google Scholar

[3] I. E. Titkov, L.A. Delimova, A.S. Zubrilov, N.V. Seredova, I.A. Liniichuk, and I.V. Grekhov: Journal of Modern Optics Vol. 56 (2009), p.653

DOI: 10.1080/09500340902737051

Google Scholar

[4] T. Ive, T. Ben-Yaacov, C.G.V. De Walle, U.K. Mishra, S.P. Denbaars, and J.S. Speck: Journal of Crystal Growth Vol. 310 (2008), p.3407

DOI: 10.1016/j.jcrysgro.2008.04.032

Google Scholar

[5] H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee: J. Appl. Phys. Vol. 95 (2004), p.1246

Google Scholar

[6] M. Liu, X. Q. Wei, Z. G. zhang, G. Sun, C. S. Chen, C. S. Xue, H. Z. Zhuang, and B. Y. Man: Appl. Surf. Sci. Vol. 252 (2006), p.4321

Google Scholar

[7] B. J. Coppa, R. F. Davis, and R. J. Nemanich: Appl. Phys. Lett. Vol. 82(3) (2003), p.400

Google Scholar

[8] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bei, C. Sun, R. F. Huang, and L. S. Wen: Appl. Surf. Sci. Vol. 158 (2000), p.134

Google Scholar

[9] T. C. Damen, S. P. S. Porto, and B. Tell: Phys. Rev. Vol. 142 (1966), p.570

Google Scholar

[10] J. Chen and W. Z. Shen: Appl. Phys. Lett. Vol. 83 (2003), p.2154

Google Scholar

[11] Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang, and D. P. Yu: Appl. Phys. Lett. Vol. 83 (2003), p.1689

Google Scholar

[12] H. J. Fan, R. Schoolz, F. M. Kolb, M. Zacharias, U. Gosele, F. Heyroth, C. Eisenschmidt, T. Hempel, and J. Christen: Appl. Phys. A. Vol. 79(8) (2004), p.1895

DOI: 10.1007/s00339-004-2933-2

Google Scholar

[13] B. Lin, Z. Fu, and Y. Jia: Appl. Phys. Lett. Vol. 79(7) (2001), p.943

Google Scholar