Ferroelectric, Dielectric and Pyroelectric Properties of Highly C-Axis -Oriented Nanostructured (Pb,Sr)(Zr,Ti)O3 Thin Films

Article Preview

Abstract:

Lead strontium zirconate titanate (Pb0.92Sr0.08)(Zr0.65Ti0.35)O3 (PSZT) thin films were grown on Pt (111)/Ti/SiO2/Si(100) substrates using a simple sol-gel method. X-ray diffraction studies confirmed that all the PSZT films undergone various thermal process show highly preferred (001)-orientation. On the surface image of the thin film, many clusters are found, which are composed by grains in size of 0.5-0.8 mm. Between the clusters, the nano-size grain is about 50-80 nm. The root mean square (RMS) roughness of the film surfaces is 5.1 nm. PSZT thin film exhibit excellent ferroelectric behavior, demonstrated by reproducible hystersis loops with high remnant polarization (Pr =49 μC cm-2) and relative low coercive field (Ec=53.5 kV cm-1). The pyroelectric coefficients (p) were measured, at 26 °C, the p=215 mC m-2 K-1 for PSZT films. The dielectric properties as well as phase transition behavior were characterized and a ferroelectric to paraelectric transition were found in the vicinity of 196 °C.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 287-290)

Pages:

2381-2386

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Singh, T.C. Goel, and S. Chandra, Mater. Chem. Phys. 110 (2008) 120.

Google Scholar

[2] B.H. Chen, C.L. Huang, and L. Wu, Solid State Electrons, 48 (2004) 2293.

Google Scholar

[3] X.G. Tang, A.L. Ding, Y. Ye, W.X. Chen, Thin Solid Films, 423 (2003) 13.

Google Scholar

[4] E.C.F. Souza, A.Z. Simões, M. Cilense, E. Longo, and J.A. Varela, Mater. Chem. Phys. 88 (2004) 155.

Google Scholar

[5] Q. Zhang, and R.W. Whatmore, J. Appl. Phys., 94(2003) 5228.

Google Scholar

[6] H. Zheng, I.M. Reaney, and W.E. Lee, J. Am. Ceram. Soc., 85 (2002) 2337.

Google Scholar

[7] C. Bedoya, Ch. Muller, J.L. Baudour, V. Madigou, M. Anne, and M. Roubin, Mater. Sci. Eng. B75 (2000) 43.

Google Scholar

[8] Y.J. Yu, J.B. Tu, and R.N. Singh, J Am Ceram Soc, 84 (2001) 333.

Google Scholar

[9] S. Sriram, M. Bhaskaran, A.S. Holland, K.T. Shot, and B.A. Latella, J. Appl. Phys. 101(2007) 104910.

Google Scholar

[10] X.G. Tang, H. L. W. Chan, A.L Ding, WG. Luo, and Q.R. Yin, Surf. Coat.Tech. 161(2002) 169.

Google Scholar

[11] Y.P. Jiang, X.G. Tang, Q.X. Liu, Q. Li, and A.L. Ding, Mater. Sci. Eng. B137 (2007) 304.

Google Scholar

[12] X.G. Tang, A.L. Ding, and H.L. W. Chan, Chin. Phys. Lett. 20 (2003) 2039.

Google Scholar

[13] C. M. Foster, G.R. Bai, R. Csencsits, J. Vetrone, R. Jammy, L. A. Wills, E. Carr, and J. Amano, J. Appl. Phys. 81 (1997) 2349.

Google Scholar

[14] I. Kanno, S. Fujii, T. Kamada, and R. Takayama, Appl. Phys. Lett. 70 (1997) 1378.

Google Scholar

[15] D.S. Fu, H. Suzuki, T.Ogawa, and K. Ishikawa, Appl. Phys. Lett. 80(2002) 3572.

Google Scholar

[16] S.Y. Chen, and I.W. Chen, J. Am. Ceram. Soc. 81(1998) 97.

Google Scholar

[17] F. M. Pontes, S. H. Leal, E.R. Leite, E. Longo, P.S. Pizani, A.J. Chiquito, M.A.C. Machado, and J.A. Varela, Appl. Phys. A 80(2005) 813.

DOI: 10.1007/s00339-003-2490-0

Google Scholar

[18] R. Poyato, M. L. Calzada, and L. Pardo, J. Appl. Phys. 93 (2003) 4081.

Google Scholar

[19] X.R. Fu, J.H. Li, Z.T. Song, and C.L. Lin, J Cryst. Growth, 220 (2000) 82.

Google Scholar

[20] T. Tani, Z.K. Xu, and D.A. Payne, Mat. Res. Soc. Symp. Proc., 310 (1993) 269.

Google Scholar

[21] J.S. Cross, M. Fujiki, M. Tsukada, Y. Kotaka, and Y. Goto, J. Mater. Res. 14(1999) 4366.

Google Scholar

[22] X.G. Tang, L.L. Jiang, S.J. Kuang, A.L. Ding, and H.L.W. Chan, Chin. J. Chem. Phys. 20 (2007) 665.

Google Scholar

[23] W.R. Whatmore, A. Patel, N.M. Shorrocks, and F.W. Ainger, Ferroelectrics, 104 (1990) 269.

Google Scholar

[24] C.C. Chang, and C.S. Tang, J. Appl. Phys. 87 (2000) 3931.

Google Scholar

[25] Z. Huang, Q. Zhang, and W. R. Whatmore, J. Appl. Phys. 85 (2000) 7355.

Google Scholar

[26] M. Kohli, A. Seifert, and P. Muralt, Integr. Ferroelectr. 22 (1998) 453.

Google Scholar

[27] P. Muralt, Rep. Prog. Phys. 64 (2001) 1339.

Google Scholar

[28] X.G. Tang, J. Wang, H.L.W. Chan, and A.L. Ding, J. Crystal Growth, 267 (2004) 117.

Google Scholar

[29] H. Zheng, I.M. Reaney, W.E. Lee, N. Jones, and H. Thomas, J Am Ceram Soc, 85(2002) 2337.

Google Scholar

[30] J. Mendiola, M.L. Calzada, P. Ramos, M.J. Martin, and F. Agullo´-Rueda, Thin Solid Films, 1998, 315(1998) 195.

DOI: 10.1016/s0040-6090(97)00698-6

Google Scholar