High Polaried Transmission Effects for Double-Layer Metallic Grating Films on GaN Substrate

Article Preview

Abstract:

Highly polarized light transmission from GaN based light emitting diode is proposed using a double-layer metallic grating film and a dielectric transition layer. TM mode transmission and the polarized extinction ratio (ER) are calculated using commercial software, based on a full vector implementation of Rigorous Coupled Wave Analysis (RCWA) algorithm. Such a thin-film double-layer grating with subwavelength metallic stripes are designed and simulated by perfect parameters of period, thickness and filling factor for achieving good polarization properties. It is found that TM transmission and ER are almost stable and flat under different slit arrays of the double-layer grating. The polarized structure shows larger width of incident wavelength with a transition layer of a low refractive index than that of a high refractive index, but higher TM transmission and ER can be obtained for low refractive index transition layer. Flat sensitivity and high transmission of the TM mode on the double-layer metal grating thickness have been achieved. Up to 100nm range of the grating height can be employed to achieve TM transmission more than 92% while ER > 20dB. The results provide guidance in designing, optimizing and fabricating the integrated GaN-based and polarized photonic devices.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

1289-1293

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino and L. Chen: Opt. Lett. Vol. 30 (2005), p.195

Google Scholar

[2] J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters and X. Deng: Appl. Phys. Lett. Vol. 89 (2006), p.141105

Google Scholar

[3] W. L. Chang, P. H. Tsao, P. K. Wei: Opt. Lett. Vol. 32(2007), p.71

Google Scholar

[4] Honkanen M, Kettunen V, Lautanen J, Turunen J, Schnabel B and Wyrowski F: Appl. Phys. B, Vol. 68 (1999), p.81

Google Scholar

[5] Z. Wu, P. E. Power, A. M. Sarangan and Q. Zhan: Opt. Lett. Vol. 33 (2008), p.1653

Google Scholar

[6] H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim, and Y. H. Lee: Opt. Express, Vol. 14 (2006), p.8654

DOI: 10.1364/oe.14.008654

Google Scholar

[7] Kojima K, Schwarz Ulrich T, Funato M, Kawakami Y, Nagahama S and Mukai T: Opt. Express, Vol. 15 (2007), p.7730

DOI: 10.1364/oe.15.007730

Google Scholar

[8] Wang X. H., Fu W. Y., Lai P. T., Choi H. W.: Opt. Express, Vol. 17 (2009), p.22311

Google Scholar

[9] L. Zhang, J. H. Teng, S. J. Chua, and E. A. Fitzgerald: Appl. Phys. Lett. Vol. 95 (2009), p.261110

Google Scholar

[10] G. Zhang, C. Wang, B. Cao, Z. Huang, J. Wang, B. Zhang and K. Xu: Opt. Express, Vol. 18 (2010), p.7019

Google Scholar

[11] M. G. Moharam and T. K. Gaylord: J. Opt. Soc. Am. A. 3 (1986), p.1780

Google Scholar

[12] S. Astilean, Ph. Lalanne and M. Palamaru: Opt. Commun. Vol. 175 (2000), p.265

Google Scholar

[13] Information on http://www.gsolver.com

Google Scholar