Fabrication and Luminescent Properties of Translucent Ce3+:Lu2SiO5 Ceramics by Spark Plasma Sintering

Article Preview

Abstract:

The spark plasma sintering (SPS) technique was employed to investigate the fabrication of cerium-doped lutetium orthosilicate (Ce:Lu2SiO5, LSO) polycrystalline scintillation ceramics starting from nanosized Ce:LSO powders synthesized by sol-gel processing. Fully-densed polycrystalline Ce:LSO ceramics with fine grains were fabricated on optimal sintering conditions of 1350°C for 5 min under pressure of 50 MPa. Translucent monolithic Ce:LSO ceramic sample was obtained with excellent luminescent characteristics after being annealed in air at 1000°C for 15 hrs. Under 360 nm UV excitation, a broad emission peak centered at 425 nm was detected for Ce:LSO ceramic, with a short decay time of only 9.67 ns. The luminescence intensity of annealed sample(doped by 0.5mol% Ce3+) is 3 times greater than that of BGO crystal under X-ray excitation. The good luminescent characteristics make Ce:LSO polycrystalline ceramics a promising scintillator candidate with high performance for radiation detection in future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 295-297)

Pages:

1300-1304

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Pidol, O. Guillot-No l, A. Kahn-Harari, B. Viana, D. Pelenc, and D. Gourier: J Phys Chem Solids, Vol. 67 (2006), pp.643-650

DOI: 10.1016/j.jpcs.2005.10.175

Google Scholar

[2] K. P. Sch fers and L. Stegger: Basic Res Cardiol, Vol. 103 (2008), pp.191-199

Google Scholar

[3] M. Ishii and M. Kobayashi: Prog Cryst Growth Ch, Vol. 23 (1992), pp.245-311

Google Scholar

[4] M. Nikl: Journal of Ceramic Processing Research, Vol. 5 (2004), pp.101-105

Google Scholar

[5] S. Surti and J. Karp: Phys Med Biol, Vol. 54 (2009), p.373

Google Scholar

[6] A. Lempicki, E. Berman, A. Wojtowicz, M. Balcerzyk, and L. Boatner: Nuclear Science, IEEE Transactions on, Vol. 40 (2002), pp.384-387

DOI: 10.1109/23.256585

Google Scholar

[7] J. L. Humm, A. Rosenfeld, and A. D. Guerra: European journal of nuclear medicine and molecular imaging, Vol. 30 (2003), pp.1574-1597

Google Scholar

[8] W. W. Moses: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 487 (2002), pp.123-128

DOI: 10.1016/s0168-9002(02)00955-5

Google Scholar

[9] A. Lempicki, C. Brecher, H. Lingertat, S. Miller, J. Glodo, and V. Sarin: Nuclear Science, IEEE Transactions on, Vol. 55 (2008), pp.1148-1151

DOI: 10.1109/tns.2007.914368

Google Scholar

[10] Y. Wang, E. van Loef, W. H. Rhodes, J. Glodo, C. Brecher, L. Nguyen, A. Lempicki, G. Baldoni, W. M. Higgins, and K. S. Shah: Ieee T Nucl Sci, Vol. 56 (2009), pp.887-891

DOI: 10.1109/tns.2009.2013342

Google Scholar

[11] G. Ren, L. Qin, S. Lu, and H. Li: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 531 (2004), pp.560-565

DOI: 10.1016/j.nima.2004.05.083

Google Scholar

[12] C. Yan, G. Zhao, Y. Hang, L. Zhang, and J. Xu: J Cryst Growth, Vol. 281 (2005), pp.411-415

Google Scholar

[13] H. Suzuki, T. Tombrello, C. Melcher, and J. Schweitzer: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 320 (1992), pp.263-272

DOI: 10.1016/0168-9002(92)90784-2

Google Scholar