[1]
E. Bakker and M. Telting-Diaz, Electrochemical sensors, Anal. Chem., vol. 74, pp.2781-2800, May (2002).
DOI: 10.1021/ac0202278
Google Scholar
[2]
G. S. Wilson and Y. Hu, Enzyme-based biosensors for in vivo measurements, Chem. Rev., vol. 100, pp.2693-2704, June (2000).
DOI: 10.1021/cr990003y
Google Scholar
[3]
E. C. Alocilja and S. M. Radke, Market analysis of biosensors for food safety, Biosens. Bioelectron., vol. 18, pp.841-846, February (2003).
DOI: 10.1016/s0956-5663(03)00009-5
Google Scholar
[4]
J. Zhou, P. Nie, H. Zheng, and J. Zhang, Progress of Electrochemical Biosensors Based on Nicotinamide Adenine Dinucleotide(phosphate)-Dependent Dehydrogenases, Chinese Journal of Analytical Chemistry, vol. 37, pp.617-623, April (2009).
DOI: 10.1016/s1872-2040(08)60098-5
Google Scholar
[5]
M. J. Lobo, A. J. Miranda, and P. Tuñón, Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes., Electroanalysis, vol. 9, pp.191-201, February (1997).
DOI: 10.1002/elan.1140090302
Google Scholar
[6]
L. Gorton and E. Domínguez, Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes, Rev. Mol. Biotechnol., vol. 82, pp.371-392, February (2002).
DOI: 10.1016/s1389-0352(01)00053-8
Google Scholar
[7]
A. Chaubey and B. D. Malhotra, Mediated biosensors, Biosens. Bioelectron., vol. 17, pp.441-456, June (2002).
Google Scholar
[8]
R. Antiochia, A. Gallina, I. Lavagnini, and F. Magno, Kinetic and thermodynamic aspects of NAD-related enzyme-linked mediated bioelectrocatalysis, Electroanalysis, vol. 14, pp.1256-1261, October (2002).
DOI: 10.1002/1521-4109(200210)14:18<1256::aid-elan1256>3.0.co;2-n
Google Scholar
[9]
M. -Y. Hong, J. -Y. Chang, H. C. Yoon, and H. -S. Kim, Development of a screen-printed amperometric biosensor for the determination of L-lactate dehydrogenase level, Biosens. Bioelectron., vol. 17, pp.13-18, January (2002).
DOI: 10.1016/s0956-5663(01)00272-x
Google Scholar
[10]
P. Du, S. Liu, P. Wu, and C. Cai, Single-walled carbon nanotubes functionalized with poly(nile blue A) and their application to dehydrogenase-based biosensors, Electrochim. Acta, vol. 53, pp.1811-1823, December (2007).
DOI: 10.1016/j.electacta.2007.08.027
Google Scholar
[11]
J. Manso, M. L. Mena, P. Yánez-Sedeno, and J. M. Pingarrón, Alcohol dehydrogenase amperometric biosensor based on a colloidal gold-carbon nanotubes composite electrode, Electrochim. Acta, vol. 53, pp.4007-4012, April (2007).
DOI: 10.1016/j.electacta.2007.10.003
Google Scholar
[12]
Y. Tsai, S. Chen, and H. Liaw, Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors, Sens. Actuators B, vol. 125, pp.474-481, August (2007).
DOI: 10.1016/j.snb.2007.02.052
Google Scholar
[13]
S. Chakraborty and C. R. Raj, Mediated electrocatalytic oxidation of bioanalytes and biosensing of glutamate using functionalized multiwall carbon nanotubes-biopolymer nanocomposite, J. Electroanal. Chem., vol. 609, pp.155-162, November (2007).
DOI: 10.1016/j.jelechem.2007.06.024
Google Scholar