Synthesis of Carbon Nanotubes, Carbon Spheres and Slices of Vertically Aligned Multi-Walled Carbon Nanotubes

Article Preview

Abstract:

Carbon nanotubes, carbon spheres and slices of vertically aligned multiwalled carbon nanotubes (MWNTs) were synthesized simultaneously by chemical vapour deposition (CVD). Electron microscopy image showed carbon nanotubes were multiwalled carbon nanotubes, several micrometers in length. Carbon spheres were of uniform diameter (about 1 μm). Slices of vertically aligned multiwalled carbon nanotubes were about 5 mm in length, 3 mm in width and 8 μm in thickness. The interior of the slice was composed of densely packed, vertical aligned MWNTs, and faceted carbon beads. They were stable and easily separated from each other. The formation mechanism of slice was also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1325-1329

Citation:

Online since:

August 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.A. Yarbrough, R. Messier: Science Vol. 247 (1990), p.688.

Google Scholar

[2] S. Iijima: Nature 354 (1991), p.56.

Google Scholar

[3] W.A. Heer, A. Chatelain, D. Ugarte: Science Vol. 270 (1995), p.1179.

Google Scholar

[4] S. Fan, M.G. Chapline, N.M. Franklin, T.W. Tombler, A.M. Cassell, H. Dai: Science Vol. 283 (1999), p.512.

Google Scholar

[5] V. Krungleviciute, L. Heroux, A.D. Migone, C.T. Kingston, B. Simard: J. Phys. Chem. B. Vol. 109 (2005), p.9317.

Google Scholar

[6] P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Fohmund, D.T. Colbert, K.A. Smith and R.E. Smalley: Chem. Phys. Lett. Vol. 313 (1999), p.91.

Google Scholar

[7] K. Kuwana, H. Endo, K. Saito, D. Qian, R. Andrews and E.A. Grulke: Carbon Vol. 43 (2005), p.253.

Google Scholar

[8] S. Yoichi, M. Takayuki, C. Yoshinori, T. Yosuke, N.G. Mikka, O. Hirokazu, O. Kazuyuki, N. Kiyoharu and A. Toshihiro: Cryst. Growth Des. Vol. 6 (2006), p.2627.

Google Scholar

[9] Y.N. Xia, B. Gates, Y.D. Yin and Y. Lu: Adv. Mater. Vol. 12 (2000), p.693.

Google Scholar

[10] W.A. de Heer, P. Poncharal, C. Berger, J. Gezo, Z.M. Song, J. Bettini and D. Ugarte: Science Vol. 307 (2005), p.907.

DOI: 10.1126/science.1107035

Google Scholar

[11] P. Serp, R. Feurer, P. Kalck, Y. Kihn, J.L. Faria and J.L. Figueired: Carbon Vol. 39 (2001), p.621.

DOI: 10.1016/s0008-6223(00)00324-9

Google Scholar

[12] Q. Wang, H. Li, L.Q. Chen and X.J. Huang: Carbon Vol. 39 (2001), p.2211.

Google Scholar

[13] Y.C. Tseng, P.Q. Xuan, A. Javey, R. Malloy, Q. Wang, J. Bokor and H.J. Dai: Nano. Lett. Vol. 4 (2004), p.123.

Google Scholar

[14] L.F. Sun, Z.Q. Liu, X.C. Ma, Z.Y. Zhong, S.B. Tang, Z.T. Xiong, D.S. Tang, W.Y. Zhou, X.P. Zou, Y.B. Li, K.L. Tan, S.S. Xie and J.Y. Lin: Chem. Phys. Lett. Vol. 340 (2001), p.222.

Google Scholar

[15] H. Zhu, H.Y. Lin, H.F. Guo and L.F. Yu: Mat. Sci. Eng. B Vol. 138 (2007), p.101.

Google Scholar

[16] P. Wang, J.Y. Wei, B.B. Huang, X.Y. Qin, S.S. Yao, Q. Zhang, Z.Y. Wang, G.H. Xu and X. Y Jing: Mater. Lett. Vol. 61 (2007), p.4854.

Google Scholar