Synthesis of CdS Quantum Dots for Detection of Copper (II) Using Fluorescence Spectroscopy

Article Preview

Abstract:

We report the synthesis and characterization of a low-cost high-quality CdS quantum dots (QDs).The synthesis was performed in aqueous system. The aqueous CdS colloidal solution was prepared using thioglycollic acid as a capping agent. Zetasizer Nano ZS (Malvern, UK) was employed to characterize the partical size of CdS QDs. The UV-vis and photoluminescence (PL) spectra of samples were systematically characterized (the full width at half maximum was 38 nm). The maximum photoluminescence (PL) quantum yield (QY) was as high as 68.5 %. The fluorescence intensity was enhanced by copper (II). The relative fluorescence intensity was linear to copper (II) concentration over the range 4.0 ×10-6 - 2.8×10-5 g mL-1. The regression equation was ΔIF= 59.07+ 90.57c (c / μg mL-1). The highly monodispersed CdS QDs could be used in many fields.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1334-1337

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Lu and C. M. Lieber: Nat. Mater. Vol. 6 (2007), p.841.

Google Scholar

[2] F. Patolsky, G. Zheng and C. M. Lieber: Anal. Chem. Vol. 78 (2006), p.4260.

Google Scholar

[3] T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmu¨ller and H. Weller: J. Phys. Chem. Vol. 98 (1994), p.7665.

DOI: 10.1021/j100082a044

Google Scholar

[4] P. Reiss, J. Bleuse and A. Pron: Nano Lett. Vol. 2 (2002), p.781.

Google Scholar

[5] D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller: Nano Lett. Vol. 1 (2001), p.207.

Google Scholar

[6] B. Cockayne and P. J. Wright: J. Cryst. Growth. Vol. 68 (1984), p.223.

Google Scholar

[7] C. H. Chang and Y. L. Lee: Appl. Phys. Lett. Vol. 91 (2007), p.3.

Google Scholar

[8] J. L. Zhao, J. A. Bardecker, A. M. Munro, M. S. Liu, Y. H. Niu, I. K. Ding, J. D. Luo, B. Q. Chen, A. K. Y. Jen and D. S. Ginger: Nano Lett. Vol. 6 (2006), p.463.

Google Scholar

[9] Y. W. Wang, G. W. Meng, L. D. Zhang, C. H. Liang and J. Zhang: Chem. Mater. Vol. 14 (2002), p.1773.

Google Scholar

[10] L. F. Dong, J. Jiao, M. Coulter and L. Love: Chem. Phys. Lett. Vol. 376 (2003), p.653.

Google Scholar

[11] X. F. Duan, Y. Huang, R. Agarwal and C. M. Lieber: Nature. Vol. 421 (2003), p.241.

Google Scholar

[12] Y. Huang, X. F. Duan and C. M. Lieber: Small. Vol. 1 (2005), p.142.

Google Scholar

[13] J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li and S. T. Lee: Nano Lett. Vol. 6 (2006), p.1887.

Google Scholar

[14] S. Goubert-Renaudin, M. Etienne, S. Brandes, M. Meyer, F. Denat, B. Lebeau and A. Walcarius: Langmuir, Vol, 25 (2009), p.9804.

DOI: 10.1021/la900892q

Google Scholar

[15] E. Pose, R. Rial-otero, M. Paradelo and J. E. Lopez-Periago: J. Agric. Food Chem. Vol. 57 (2009), p.2843.

DOI: 10.1021/jf803275k

Google Scholar

[16] X. M. Liu, Y. Jiang, X. Z. Lan, S. Y. Li, D. Wu, T. T. Han, H. H. Zhong and Z. P. Zhang: J. Colloid Interface Sci. Vol, 354 (2011), p.15.

Google Scholar