Hard-Templating Synthesis of Mesopours La1-xSrxMnO3+σ Perovskite and Catalysis Activity in CO Oxidation

Article Preview

Abstract:

La1-xSrxMnO3+σ perovskite/ySBA-15(x=0, 0.1, 0.2, 0.3、y=0, 1, 2, 3) catalyzers were prepared by two different methods, which are the hard-templating and sol-gel methods. The catalysts were characterized by Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), X-ray fluorescence spectroscopy(XRD) and N2 adsorption/desorption(BET). Their catalytic activity in the oxidation of CO was evaluated. BET and SEM results showed that the repeated template samples had higher surface area(143.7m2/g) and smaller particle size(18nm). The catalytic activity for CO reached the highest value when x=0.2 and y=2. The repeated template samples had higher activity than the sol-gel samples due to the higher surface area.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 306-307)

Pages:

1342-1349

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Westerholm. A. Christensen and A. Rosen, Atmos. Environ. 30, 3529 (1996).

Google Scholar

[2] R. Ramamoorthy, M.K. Kennedy, H. Nienhaus, H. Fissan, Sens. Actuators B 88, 281 (2003).

Google Scholar

[3] A.E. Giannakas, T.C. Vaimakis, A.K. Ladavos, P.N. Trikalitis, P.J. Pomonis, J. Colloid Interface Sci. 259, 244 (2003).

DOI: 10.1016/s0021-9797(02)00068-1

Google Scholar

[4] G. Dezanneau, A. Sin, H. Roussel, H. Vincent, M. Audier, J. Solid State Comm. 121, 133 (2002).

Google Scholar

[5] R. Spinicci, A. Delmastro, S. Ronchetti, A. Tofanari, J. Mater. Chem. Phys. 78, 393 (2002).

Google Scholar

[6] E. Krupicka, A. Reller, A. Weidenkaff, J. Cryst. Eng. 5, 195 (2002).

Google Scholar

[7] An-Hui. Lu, Ferdi Schüth, Adv. Mater. 18, 1793–1805 (2006).

Google Scholar

[8] Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Nature. 359, 710 (1992).

Google Scholar

[9] F. Raimondi, G.G. Scherer, R. Ko¨ tz, A. Wokaun, Angew. Chem. Int. Ed. 44, 2190–2209 (2005).

Google Scholar

[10] G.M. Medine, V. Zaikovskii, K.J. Klabunde, J. Mater. Chem. 14, 757–763 (2004).

Google Scholar

[11] C.L. Carnes, J. Stipp, K.J. Klabunde, Langmuir 18, 1352–1359 (2002).

Google Scholar

[12] C.L. Carnes, P.N. Kapoor, K.J. Klabunde, J. Bonevich, Chem. Mater. 14, 2922–2929 (2002).

Google Scholar

[13] S. Rajagopalan, O. Koper, S. Decker, K.J. Klabunde, Chem. -Eur. J. 8, 2602–2607 (2002).

Google Scholar

[14] Yangang Wang, Jiawen Ren, Yanqin Wang, Fengyuan Zhang, Xiaohui Liu, Yun Guo, and Guanzhou Lu, J. Phys. Chem. C. 112, 15293-15298 (2008).

Google Scholar

[15] Juliette van der Meer, Isabelle Bardez, Florence Bart, Pierre-Antoine Albouy, Gilles Wallez, Anne Davidson, Microporous and mesoporous Materials 118, 183-188 (2009).

DOI: 10.1016/j.micromeso.2008.08.053

Google Scholar

[16] Jin-yong Luo, Ming Meng, Ying Qian, Zhi-Qiang Zou, Ya-ning Xie, Tian-dou Hu, Tao Liu, and Jing Zhang, Catalusis Letters (2007).

Google Scholar

[17] K.K. Zhu, B. Yue, W.Z. Zhou, H.Y. He, Chem. Comm. 98–99 (2003).

Google Scholar

[18] Yang, P.; Zhao, D.I.; Chmelka, B.F.; Stucky, G. D Nature. 396, 152 (1998).

Google Scholar

[19] Cimino, S.; Colonna, S.; De Rossi, S.; Faticanti, M.; Lisi, L.; Porta, P. J. Catal. 205, 309 (2002).

Google Scholar

[20] T. Valde´s-Solı´s , A.B. Fuertes, Materials Research Bulletin 41, 2187–2197 (2006).

Google Scholar

[21] Sauer, J.; Marlow, F.; Spliethoff, B.; Schu¨th, F. Chem. Mater. 14, 217 (2002).

Google Scholar

[22] Vidal, H.; Bernal, S.; Baker, R. T.; Finol, D.; Pe´rez Omil, J. A.; Pintado, J. M.; Rodrı´guez-Izquierdo, J. M. J. Catal. 183, 53 (1999).

DOI: 10.1006/jcat.1998.2354

Google Scholar

[23] Michael Tiemann, Chem Mater. 20, 961-971 (2008).

Google Scholar

[24] Luo, J. Y, Meng, M.; Qian, Y.; Zou, Z. -Q; Hu, T. -d, Liu, T, Zhang, J. Catal. Lett. 116, 50 (2007).

Google Scholar