The Prediction for the Residual Life of Waste Drive Axle Housing Basing on Neural Network

Abstract:

Article Preview

In order to estimate the residual life of waste drive axle housing, the prediction model of waste axle housings with artificial neural networks is built in this paper. Take the deformation, residual stress and the gradient of magnetic intensity Kmax relating to axle housing’s fatigue damage degree as the input of neural network, and compare the testing residual life of the waste drive axle housing with its predicting residual life. The result demonstrates that: the deformation, residual stress and the gradient of magnetic intensity Kmax of axle housing as the characteristic parameter estimating the degree of fatigue damage, adopting trainbr training function can get good network performance and comparatively high precision of prediction. Besides, the longer the residual life of the waste axle housing is, the more precise the prediction life will be.

Info:

Periodical:

Advanced Materials Research (Volumes 308-310)

Edited by:

Jian Gao

Pages:

246-250

DOI:

10.4028/www.scientific.net/AMR.308-310.246

Citation:

S. X. Song et al., "The Prediction for the Residual Life of Waste Drive Axle Housing Basing on Neural Network", Advanced Materials Research, Vols. 308-310, pp. 246-250, 2011

Online since:

August 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.