Effect of Thickness on the Structural, Electrical and Optical Properties of ZnO Films Deposited by MBE

Article Preview

Abstract:

A set of ZnO films of different thickness have been deposited on sapphire substrates using molecular beam epitaxy (MBE) by varying the growth time and the effect of film thickness on the structural, electrical and optical properties have been investigated. The X-ray diffraction (XRD) results indicate that the full width at half maximum (FWHM) of the (002) diffraction peak is decreased as the film thickness increasing, and the stress along c-axis is stable. Scanning electron microscope (SEM) measurement shows that the grains become more uniform as the film grows thicker and the film surface present distinct hexagon shape as the film is grown up to a thickness of 500nm. The optical absorbance, Hall mobility and photoluminescence (PL) intensity are increased in accordance with the thickness of the film.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 311-313)

Pages:

1271-1276

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Neeru Kumar, Ravinder Kaur, R. M. Mehra, Journal of Luminescence. 126 (2007) 784-788.

Google Scholar

[2] Y. F. Chen, D. M. Bagnall, H. Koh,, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84 (1998) 3912.

Google Scholar

[3] R. Ghosh, G. K. Paul, D. Basak, Bull. Mater. Sci. 40 (2005) 1905-1914.

Google Scholar

[4] W. Y. Liang, A. D. Yoffe, Phys. Rev. Lett. 20 (1968) 59.

Google Scholar

[5] D. C. Look, Mater. Sci. Eng. B 80 (2001) 383.

Google Scholar

[6] Bin-Zhong Dong, Guo-Jia Fang, Jian-Feng Wang, Wen-Jie Guan, Xing-Zhong Zhao, J. Appl. Phys. 101 (2007) 033713.

Google Scholar

[7] H.Agura, A.Suzuki, T. Matsushita, T. Aoki, M. Okuda, Thin Solid Film 445 (2003) 263.

Google Scholar

[8] T. Minami, Semicond. Sci. Technol. 20 (2005) 35.

Google Scholar

[9] S. Choopun, R. D. Vispute, W. Noch, A. Balsamo, R. P. Sharma, T. Venkatesan, A. Iliadis, D. C. Look, Appl. Phys. Lett. 75 (1999) 3947.

DOI: 10.1063/1.125503

Google Scholar

[10] S. Mridha, D. Basak, Bull. Mater. Sci. 42 (2007) 875-882.

Google Scholar

[11] Petronela Prepelita, R. Medianu, Beatrice Sbarcea, F. Garoi, Mihaela Filipescu, Appl. Surf. Sci. 256 (2010) 1807-1811.

DOI: 10.1016/j.apsusc.2009.10.011

Google Scholar

[12] Dong Ick Son, Jubg Wook Lee, Dea Uk Lee, Tae Whan Kim, Surf. Rev. Lett. 14(4) (2007) 801-805.

Google Scholar

[13] M. Kumar, R. M. Mehra, A. Wakahara, M. Ishida, A. Yoshida, J. Appl. Phys. 93 (2003) 3837.

Google Scholar

[14] V.Craciun, J. Elders, J. G. E. Gardeniers. Lan W. Boyd, Appl. Phys. Lett. 65 (1994) 2963.

Google Scholar

[15] S. C. Su, Y. M. Lu, Z. Z. Zhang, C. X. Shan, B. Yao, B. H. Li, D. Z. Shen, J. Y. Zhang, D. X. Zhao, X. W. Fan, Appl. Surf. Sci. 254 (2008) 7303-7305.

Google Scholar

[16] E.M. Kaidashev, M.Lorenz, H.Von Wenckstern, A. Rahm, H.-C.Semmelhack, K.-H.Han, G.Benndorf, C. Bundesmann, H.Hochmuth, M.Grundmann, Appl. Phys. Lett. 82 (2003) 3901.

DOI: 10.1063/1.1578694

Google Scholar

[17] H. S. Kang, J. S. Kang, J. W. Kim, S. Y. Lee, J. Appl. Phys. 95 (2004) 1246.

Google Scholar

[18] Y. J. Lin, C.-L. Tsai, Y. –M. Lu, C.-J. Liu, J. Appl. Phys. 99 (2006) 093501.

Google Scholar