Preparation and Properties of the Drug-Loaded Films of Polyvinyl Alcohol-Graft-Fibroin Peptides

Article Preview

Abstract:

Research of biomaterials made from synthesized polymer and naturally occurring macromolecules is a promising subject. The paper reported a series of drug-loaded films manufactured by a method of solution casting, taking polyvinyl alcohol-graft-fibroin peptides (PVA-g-FP) obtained by a graft copolymerization of PVA with allyl fibroin peptides (AFP) as the polymer matrix and, the ornidazole as the model drug. The mechanical property, moisture content, dissolution degree,water absorption and water-vapor transmission rate of the films were determined respectively, and the crystalline of the films were characterized via X-ray diffraction, the morphology of the films and the dispersity profile of the drug ornidazole loaded in the matrix of PVA-g-FP were investigated via the scanning electronic microscopy (SEM). It was concluded that: with the increase of the graft efficiency of FP in the PVA-g-FP films, the mechanical property and the degree of crystalline reduced gradually; but the moisture content, dissolution degree and water-vapor transmission rate rised gradually, and especially, the dispersity of the drug loaded in the PVA-g-FP matrix improved evidently. The results may be useful in exploiting biomaterials such as artificial skin, drug delivery systems and wound dressings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-209

Citation:

Online since:

August 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.G. Pritchard, Poly(vinyl Alcohol), Gordon and Breach Science, London, (1970).

Google Scholar

[2] T.C. Wu, J.C. West, US Patent 4, 463, 138 (July 31, 1984).

Google Scholar

[3] C.M. Hassan, T.H. Ward, N.A. Peppas, Polymer, 41(2000), p.6729.

Google Scholar

[4] Y. -L. Liu and Y. -C. Chiu, J. Appl. Polym. Sci. Part A. Polym. Chem., 41 (2003), p.1107.

Google Scholar

[5] E.H. Schacht, G. Desmarets, E. Goethals and T. St. Pierre, Macromolecules, 16 (1983), p.291.

Google Scholar

[6] F. Arranz, E.M. Bejarano and M. Sanchez-Chaves, Macromol. Chem. Phys., 195(1994), p.3789.

Google Scholar

[7] M. Sanchez-Chaves, F. Arranz and M. Cortazar, Polymer, 39(1998), p.2751.

Google Scholar

[8] R. Nazarov, H.J. Jin and D.L. Kaplan, Biomacromolecules, 5(2004), p.718.

Google Scholar

[9] Y. -Q. Zhang, W. -L. Zhou and W. -D. Shen, J. Biotechnol., 120(2005), p.315.

Google Scholar

[10] R. Rujiravanit, S. Kruaykitanon and A.M. Jamieson, Macromol. Biosci., 3(2003) , p.604.

Google Scholar

[11] O. Bayraktar, Ö. Malay, Y. Özgarip and A. Batıgün, Eur. J. Pharm. Biopharm., 60(2005), p.373.

Google Scholar

[12] X. -Y. Wang, X. Hu, A. Daley, O. Rabotyagova, P. Cebe and D. L. Kaplan, J. Control. Release, 121(2007), p.190.

Google Scholar

[13] X. -Y. Wang, X.H. Zhang, J. Castellot, I. Herman, M. Iafrati and D. L. Kaplan, 29(2008), p.894.

Google Scholar

[14] L. Uebersax, H.P. Merkle and L. Meinel, J. Control. Release, 127(2008), p.12.

Google Scholar

[15] B.D. Lawrence, J.K. Marchant, M.A. Pindrus, F.G. Omenetto, D.L. Kaplan, Biomaterials, 30(2009) , p.1299.

DOI: 10.1016/j.biomaterials.2008.11.018

Google Scholar

[16] R.F. Weska, G.M. Nogueira, W.C. Vieira, M.M. Beppu, Bioceremics, 21(2009), p.396.

Google Scholar

[17] S.Z. Lu, X.Q. Wang, Q. Lu, X. Hu, N. Uppal, F.G. Omenetto and D.L. Kaplan, Biomacromolecules, 10(2009) , p.1032.

DOI: 10.1021/bm800956n

Google Scholar

[18] T. Tanaka, T. Tanigami and K. Yamaura, Polym. Int., 45(1998), p.175.

Google Scholar

[19] T. Tanaka, S. Ohnishi and K. Yamaura, Polym. Int., 48 (1999), p.811.

Google Scholar

[20] Q. Wang, L. Qi, X. -W. Li, Des. Monomers. Polym., 12(2009) , p.323.

Google Scholar

[21] Q. Wang and L. Qi. Iran. Polym. J., 18 (2009), p.663.

Google Scholar

[22] L. -X. Dai, J. Li, E. Yamada, J. Appl. Polym. Sci., 86(2002), p.2342.

Google Scholar