[1]
C. Pasquini, J. Cortez, L. M. C. Silva, F. B. Gonzaga, Laser Induced Breakdown Spectroscopy, J. Braz. Chem. Soc. 18, (2007) 463-512.
DOI: 10.1590/s0103-50532007000300002
Google Scholar
[2]
D. Romero, J. M. F. Romero, J. J. Laserna, Distribution of metal impurities in silicon wafers using imaging-mode multi-elemental LIBS, J. Anal. At. Spectros. 14 (1999) 199-204.
DOI: 10.1039/a807362g
Google Scholar
[3]
D. Romero, J. J. Laserna, Multielemental Chemical Imaging Using laser-induced breakdown spectrometry, Anal.Chem. 69 (1997) 2871-2876.
DOI: 10.1021/ac9703111
Google Scholar
[4]
M. Milan, P. Lucena, C. L. Cabalin, J. J. Laserna, Depth profiling of phosphorous in photonic-grade silicon using laser-induced breakdown spectrometry, Appl. Spectros. 52 (1998) 444-448.
DOI: 10.1366/0003702981943662
Google Scholar
[5]
D. Romero, J. J Laserna, Surface and tomographic distribution of carbon impurities in photonic-grade using laser-induced breakdown spectroscopy, J. Anal. At. Spectros. 13 (1998) 557-560.
DOI: 10.1039/a707783a
Google Scholar
[6]
S.Darwiche, M. Benmansour, N. Eliezer, D. Morvan, Investigation of optimized experimental parameters including laser wavelength for boron measurement in photovoltaic grade silicon using laser-induced breakdown spectroscopy, Spectrochim. Act. Part B 65 (2010) 738–743.
DOI: 10.1016/j.sab.2010.04.014
Google Scholar
[7]
J. Bengoechea, J.A. Aguilera, C. Aragon, Application of laser-induced plasma spectroscopy to the measurement of Stark broadening, Spectrochim. Acta Part B 61 (2006) 69-80.
DOI: 10.1016/j.sab.2005.11.003
Google Scholar
[8]
H.R. Griem, Plasma Spectroscopy, McGraw-Hill Book Company, New York, 1964.
Google Scholar
[9]
S. Darwiche, M. Benmansour, N. Eliezer, D. Morvan, Quantitative analysis of boron in wafers and MG silicon using laser induced breakdown spectroscopy, JOAM 12 (2010) 681-685.
DOI: 10.1016/j.sab.2010.04.014
Google Scholar