The Effect of Titanium Addition on Microstructure and Properties of Laves Phase Cr2Nb Alloy Synthesized by Hot Pressing

Article Preview

Abstract:

The composite materials with a nominal composition of Cr2Nb-24wt.%Ti were fabricated by mechanical alloying followed by hot pressing. The microstructures and properties were investigated on the composites contained with Laves phase prepared through 20 hours mechanical alloying of chromium, niobium and titanium elemental powders and hot pressing at 1250°C for half an hour. The results indicate that the near full-dense Laves phase Cr2(Nb,Ti) based alloy with homogeneous composition and microstructure is obtained by mechanical alloying and hot pressing techniques. The dispersed soft second phase Nb solid solutions with the fine grain size less than 1μm are distributed uniformly on the matrix. The sample has a relative density of 99%, fracture toughness of 5.32MPa•m1/2 and compress strength of 2080MPa. Due to the effect of fine-grain and alloying addition, the toughening of the Cr2(Nb,Ti) based alloy has been fully realized.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 328-330)

Pages:

1102-1108

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.T. Liu, J.H. Zhu, M.P. Brady, C.G. McKamey and L.M. Pike: Intermetallics, Vol. 8 (2000), p.1119.

Google Scholar

[2] M. Takeyama and C.T. Liu: Mater Sci Eng A, Vol. 132 (1991), p.61.

Google Scholar

[3] T. Takasugi, S. Hanada and M. Yoshida: Mater Sci Eng A, Vol. 192/193 (1995), p.805.

Google Scholar

[4] T. Takasugi and M. Yoshida: Intermetallics, Vol. 10 (2002), p.85.

Google Scholar

[5] B.P. Bewlay, H.A. Lipsitt and M.R. Jackson: Mater Sci Eng A, Vol. 192/193 (1995), p.534.

Google Scholar

[6] C.T. Liu, P.F. Tortorelli, J.A. Horton and C.A. Carmichael: Mater Sci Eng A, Vol. 214 (1996), p.23.

Google Scholar

[7] D.L. Davidson, K.S. Chan and D.L. Anton: Metall Mater Trans A, Vol. 27A (1996), p.3007.

Google Scholar

[8] K.S. Kumar, L. Pang, J.A. Horton and C.T. Liu: Intermetallics, Vol. 11 (2003), p.677.

Google Scholar

[9] S.Q. Lu, B.Y. Huang and Y.H. He: Acta Aeronautica et Astronautica Sinica, Vol. 24 (2003) No. 6, p.568. (in Chinese).

Google Scholar

[10] X. Xiao, S.Q. Lu, P. Hu, M.G. Huang and M.W. Fu: Mater Sci Eng A, Vol. 485 (2008) No. 1-2, p.80.

Google Scholar

[11] T. Ohta, Y. Nakagawa and Y. Kaneno: J Mater Sci, Vol. 38 (2003), p.657.

Google Scholar

[12] C. Suryanayana: Prog Mater Sci, Vol. 46 (2001), p.1.

Google Scholar

[13] L. Sanboth, P.K. Liaw, C.T. Liu and Y.T. Chou: Mater Sci Eng A, Vol. 268 (1999), p.184.

Google Scholar

[14] H. Okaniwa, D. Shindo, M. Yoshida and T. Takasugi: Acta Mater, Vol. 47 (1999) No. 6, p. (1987).

Google Scholar

[15] Q. Yao, Y. Zhang and J. Sun: Acta Metallurgica Sinica, Vol. 42 (2006) No. 8, p.801. (in Chinese).

Google Scholar

[16] D.J. Thoma and J.H. Perepezko: J Alloy Compd, Vol. 224 (1995), p.330.

Google Scholar

[17] D.J. Thoma, K.A. Nibur, K.C. Chen, J.C. Cooley, L.B. Dauelsberg, W.L. Hults and P.G. Kotula: Mater Sci Eng A, Vol. 329-331(2002), p.408.

DOI: 10.1016/s0921-5093(01)01614-8

Google Scholar

[18] K.C. Chen, F. Chu, P.G. Kotula and D.J. Thoma: Intermetallics, Vol. 9 (2001), p.785.

Google Scholar

[19] J.H. Zhu, P.K. Liaw and C.T. Liu: Mater Sci Eng A, Vol. 239-240 (1997), p.260.

Google Scholar