Hydriding and Dehydriding Characteristics of As-Spun Nanocrystalline and Amorphous Mg20Ni10-xMnx (x = 0-4) Alloys

Article Preview

Abstract:

The nanocrystalline and amorphous Mg2Ni-type Mg20Ni10-xMnx (x = 0, 1, 2, 3, 4) alloys were synthesized by melt-spinning technique. The structures of the as-cast and spun alloys were characterized by XRD, SEM and HRTEM. The hydrogen absorption and desorption kinetics of the alloys were measured. The results show that the substitution of Mn for Ni, instead of changing the major phase Mg2Ni, leads to the formation of Mg and MnNi phases. No amorphous phase is detected in the as-spun Mn-free alloy, but the as-spun alloys substituted by Mn display the presence of an amorphous phase, suggesting that the substitution of Mn for Ni enhances the glass forming ability of the Mg2Ni-type alloy. The hydrogen absorption capacity of the as-cast alloys first increases and then decreases with the variation of the amount of Mn substitution. The hydrogen desorption capacity of the alloys markedly increases with growing Mn content.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

3420-3424

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Chandra, A. Sharma, R. Chellappa, W.N. Cathey, F.E. Lynch, R.C. Bowman Jr., J.R. Wermer and S.N. Paglieri: J. Alloys Compd Vol. 452 (2008), p.312

DOI: 10.1016/j.jallcom.2006.11.078

Google Scholar

[2] L. Schlapbach and A. Züttel: Nature Vol. 414 (2001), p.353

Google Scholar

[3] M.Y. Song, S.N. Kwon, J.S. Bae and S.H. Hong: Int. J. Hydrogen Energy Vol. 33 (2008), p.1711

Google Scholar

[4] M. Savyak, S. Hirnyj, H.-D. Bauer, M. Uhlemann, J. Eckert, L. Schultz and A. Gebert: J. Alloys Compd Vol. 364 (2004), p.229

DOI: 10.1016/s0925-8388(03)00529-2

Google Scholar

[5] T. Spassov and U. Köster: J. Alloys Compd Vol. 279 (1998), p.279

Google Scholar

[6] Y. Wu, M.V. Lototsky, J.K. Solberg, V.A. Yartys, W. Han and S.X. Zhou: J. Alloys Compd Vol. 477 (2009), p.262

Google Scholar

[7] S.I. Yamaura, H.Y. Kim, H. Kimura, A. Inoue and Y Arata: J. Alloys Compd Vol. 339 (2002), p.230

Google Scholar

[8] H.S. Chen: Acta Met Vol. 22 (1974), p.1505

Google Scholar

[9] S.H. Hong, Y.S. Na, S.N. Kwon, J.S. Bae and M.Y. Song: J. Alloys Compd Vol.465 (2008), p.512

Google Scholar

[10] Y. Wu, M.V. Lototsky, J.K. Solberg, V.A. Yartys, W. Han and S.X. Zhou: J Alloys Compd Vol. 477 (2009), p.262

Google Scholar

[11] S. Orimo and H. Fujii: Appl. Phys. A Vol. 72 (2001), p.167

Google Scholar

[12] G. Mulas, L. Schiffini and G. Cocco: J. Mater. Res, Vol. 19 (2004), p.3279

Google Scholar

[13] J.H. Woo and K.S. Lee: J. Electrochem. Soc Vol. 146 (1999), p.819

Google Scholar