[1]
R.A. Figueroa, A. Leonard, A.A. MacKay, Modeling Tetracycline Antibiotic Sorption to Clays, Environ. Sci. Technol. 38 (2004) 476-483.
DOI: 10.1021/es0342087
Google Scholar
[2]
C. Gu, K.G. Karthikeyan, Interaction of Tetracycline with Aluminum and Iron Hydrous Oxides, Environ. Sci. Technol. 39 (2005) 2660-2667.
DOI: 10.1021/es048603o
Google Scholar
[3]
Z. Qiang, J.J. Macauley, M.R. Mormile, R. Surampalli, C.D. Adams, Treatment of Antibiotics and Antibiotic Resistant Bacteria in Swine Wastewater with Free Chlorine, J. Agric. Food Chem. 54 (2006) 8144-8154.
DOI: 10.1021/jf060779h
Google Scholar
[4]
P. Kulshrestha, R.F. Giese, D.S. Aga, Investigating the Molecular Interactions of Oxytetracycline in Clay and Organic Matter: Insights on Factors Affecting Its Mobility in Soil, Environ. Sci. Technol. 38 (2004) 4097-4105.
DOI: 10.1021/es034856q
Google Scholar
[5]
G. Hamscher, S. Sczesny, H. Hoper, H. Nau, Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry, Anal. Chem. 74 (2002) 1509-1518.
DOI: 10.1021/ac015588m
Google Scholar
[6]
N.S. Simon, Loosely Bound Oxytetracycline in Riverine Sediments from Two Tributaries of the Chesapeake Bay, Environ. Sci. Technol. 39 (2005) 3480-3487.
DOI: 10.1021/es049039k
Google Scholar
[7]
K.J. Rockne, G.L. Taghon, D.S. Kosson, Pore Structure of Soot Deposits from Several Combustion Sources, Chemosphere 41 (2000) 1125-1135.
DOI: 10.1016/s0045-6535(00)00040-0
Google Scholar
[8]
Y. Chun, G.Y. Sheng, C.T. Chiou, B.S. Xing, Compositions and Sorptive Properties of Crop Residue-Derived Chars, Environ. Sci. Technol. 38 (2004) 4649-4655.
DOI: 10.1021/es035034w
Google Scholar
[9]
S. Kwon, J.J. Pignatello, Effect of Natural Organic Substances on the Surface and Adsorptive Properties of Environmental Black Carbon (Char): Pseudo Pore Blockage by Model Lipid Components and Its Implications for N2-Probed Surface Properties of Natural Sorbents, Environ. Sci. Technol. 39 (2005) 7932-7939.
DOI: 10.1021/es050976h
Google Scholar
[10]
J.J. Pignatello, S. Kwon, Y.F. Lu, Effect of Natural Organic Substances on the Surface and Adsorptive Properties of Environmental Black Carbon (Char): Attenuation of Surface Activity by Humic and Fulvic Acids, Environ. Sci. Technol. 40 (2006) 7757-7763.
DOI: 10.1021/es061307m
Google Scholar
[11]
H.P. Boehm, Chemical Identification of Surface Groups, Adv. Catal. 16 (1966) 179-274.
Google Scholar
[12]
M.V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin, On the characterization of acidic and basic surface sites on carbons by various techniques, Carbon 37 (1999) 1215-1221.
DOI: 10.1016/s0008-6223(98)00317-0
Google Scholar
[13]
F. Rouquerol, J. Rouquerol, K. Sing, Adsorption by powders & porous solids, Academic Press, London, 1999.
DOI: 10.1016/b978-012598920-6/50002-6
Google Scholar
[14]
A. Finizio, M. Vighi, D. Sandroni, Determination of n-octanol/water partition coefficient (Kow) of pesticide critical review and comparison of methods, Chemosphere 34 (1997) 131-161.
DOI: 10.1016/s0045-6535(96)00355-4
Google Scholar
[15]
R.A. Figueroa, A.A. MacKay, Sorption of Oxytetracycline to Iron Oxides and Iron Oxide-Rich Soils, Environ. Sci. Technol. 39 (2005) 6664-6671.
DOI: 10.1021/es048044l
Google Scholar
[16]
P.A. Blackwell, H.C.H. Lutzhoft, H.P. Ma, B. Halling-Sorensen, A.B.A. Boxall, P. Kay, Fast and robust simultaneous determination of three veterinary antibiotics in groundwater and surface water using a tandem solid-phase extraction with high-performance liquid chromatography–UV detection, J. Chromatogr. A 1045 (2004) 111-117.
DOI: 10.1016/j.chroma.2004.05.063
Google Scholar
[17]
D.L. Sparks, Environmental Soil Chemistry, second ed., Academic Press, San Diego, 2003.
Google Scholar